Search by Algolia
5 considerations for Black Friday 2023 readiness
e-commerce

5 considerations for Black Friday 2023 readiness

It’s hard to imagine having to think about Black Friday less than 4 months out from the previous one ...

Piyush Patel

Chief Strategic Business Development Officer

How to increase your sales and ROI with optimized ecommerce merchandising
e-commerce

How to increase your sales and ROI with optimized ecommerce merchandising

What happens if an online shopper arrives on your ecommerce site and: Your navigation provides no obvious or helpful direction ...

Catherine Dee

Search and Discovery writer

Mobile search UX best practices, part 3: Optimizing display of search results
ux

Mobile search UX best practices, part 3: Optimizing display of search results

In part 1 of this blog-post series, we looked at app interface design obstacles in the mobile search experience ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Mobile search UX best practices, part 2: Streamlining search functionality
ux

Mobile search UX best practices, part 2: Streamlining search functionality

In part 1 of this series on mobile UX design, we talked about how designing a successful search user experience ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Mobile search UX best practices, part 1: Understanding the challenges
ux

Mobile search UX best practices, part 1: Understanding the challenges

Welcome to our three-part series on creating winning search UX design for your mobile app! This post identifies developer ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Teaching English with Zapier and Algolia
engineering

Teaching English with Zapier and Algolia

National No Code Day falls on March 11th in the United States to encourage more people to build things online ...

Alita Leite da Silva

How AI search enables ecommerce companies to boost revenue and cut costs
ai

How AI search enables ecommerce companies to boost revenue and cut costs

Consulting powerhouse McKinsey is bullish on AI. Their forecasting estimates that AI could add around 16 percent to global GDP ...

Michelle Adams

Chief Revenue Officer at Algolia

What is digital product merchandising?
e-commerce

What is digital product merchandising?

How do you sell a product when your customers can’t assess it in person: pick it up, feel what ...

Catherine Dee

Search and Discovery writer

Scaling marketplace search with AI
ai

Scaling marketplace search with AI

It is clear that for online businesses and especially for Marketplaces, content discovery can be especially challenging due to the ...

Bharat Guruprakash

Chief Product Officer

The changing face of digital merchandising
e-commerce

The changing face of digital merchandising

This 2-part feature dives into the transformational journey made by digital merchandising to drive positive ecommerce experiences. Part 1 ...

Reshma Iyer

Director of Product Marketing, Ecommerce

What’s a convolutional neural network and how is it used for image recognition in search?
ai

What’s a convolutional neural network and how is it used for image recognition in search?

A social media user is shown snapshots of people he may know based on face-recognition technology and asked if ...

Catherine Dee

Search and Discovery writer

What’s organizational knowledge and how can you make it accessible to the right people?
product

What’s organizational knowledge and how can you make it accessible to the right people?

How’s your company’s organizational knowledge holding up? In other words, if an employee were to leave, would they ...

Catherine Dee

Search and Discovery writer

Adding trending recommendations to your existing e-commerce store
engineering

Adding trending recommendations to your existing e-commerce store

Recommendations can make or break an online shopping experience. In a world full of endless choices and infinite scrolling, recommendations ...

Ashley Huynh

Ecommerce trends for 2023: Personalization
e-commerce

Ecommerce trends for 2023: Personalization

Algolia sponsored the 2023 Ecommerce Site Search Trends report which was produced and written by Coleman Parkes Research. The report ...

Piyush Patel

Chief Strategic Business Development Officer

10 ways to know it’s fake AI search
ai

10 ways to know it’s fake AI search

You think your search engine really is powered by AI? Well maybe it is… or maybe not.  Here’s a ...

Michelle Adams

Chief Revenue Officer at Algolia

Cosine similarity: what is it and how does it enable effective (and profitable) recommendations?
ai

Cosine similarity: what is it and how does it enable effective (and profitable) recommendations?

You looked at this scarf twice; need matching mittens? How about an expensive down vest? You watched this goofy flick ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

What is cognitive search, and what could it mean for your business?
ai

What is cognitive search, and what could it mean for your business?

“I can’t find it.”  Sadly, this conclusion is often still part of the modern enterprise search experience. But ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

How neural hashing can unleash the full potential of AI retrieval
ai

How neural hashing can unleash the full potential of AI retrieval

Search can feel both simple and complicated at the same time. Searching on Google is simple, and the results are ...

Bharat Guruprakash

Chief Product Officer

Looking for something?

Removing roadblocks: A closer look at the three biggest barriers to relevant, personalized AI-Powered Search

Oct 4th 2021 algolia

Removing roadblocks: A closer look at the three biggest barriers to relevant, personalized AI-Powered Search
facebookfacebooklinkedinlinkedintwittertwittermailmail

Consumers expect always-on, frictionless, dynamic and personalized digital experiences. But as it stands, 99 percent of companies not named Amazon or Netflix have struggled to deliver world-class search. Why? Because humans search in messy, unpredictable ways. People use different words to look for the same things – and this doesn’t even take into account the different languages we speak. Expected search results vary from one person to another based on preferred brands and lifestyles. Expected results also change over time based on seasons and trends. (Think about what we expected when searching for “masks” today compared to a year ago.) Also, results customers expect don’t always align with what businesses want to surface first. Finally, there is a vast difference between a site that delivers “basic textual search” and one that provides “best-in-class search.” Best-in-class search is fast, relevant, personalized and predictive/prescriptive — and this is the type of search that fuels the best digital experiences. 

Enter Artificial Intelligence (AI). Businesses can apply AI to solve search-related challenges, thereby enabling brands to deliver meaningful digital experiences. When it comes to applying AI to search, many organizations find the task complex and challenging. Tech leaders consider AI difficult to master; they think it is a technology that is not “standardized” that can yield sometimes unexplainable results. AI is also a technology that requires specific expertise to implement, and a great deal of testing, iterating and fine-tuning. What are the biggest barriers to adopting AI-powered search, and how can we begin to address these roadblocks?

First, let’s discuss what we mean when we say “AI-powered search.” Search is inherently complex, with ever-changing user behavior and ever-expanding (yet imperfect) data. And while AI can help simplify the search process and improve the accuracy of search results, AI is not a magic, “one-size-fits-all” solution. But we can solve for many of search’s complexities with a step-by-step approach. We want to build a search engine that gets smarter and learns from user behavior. AI should allow companies to deploy tailored digital experiences that are driven by transparency, natural language understanding and personalization. Ultimately, we want people to consistently find what they’re looking for in their top three search results. Ideally, when someone asks their Alexa or Google Home assistant a question, we want them to get the single best answer.

So, what roadblocks stand between companies and their AI-powered search goals?

  1. There is no one, standard way to implement AI. This means there are a lot of different technologies and tools associated with AI, and each is complex to master. There is also an expectation mismatch between what enterprises expect of AI and what AI can actually do. Sometimes, a problem or use case needs to be broken down into a series of smaller, more concrete problems that existing AI technology can solve. Search, for example, has multiple problems: data enrichment/cleanup issues, natural language processing challenges, synonym differences, query understanding disconnects, etc. Currently, no single AI algorithm exists that is able to solve all these problems at once. Without an AI standard, mapping problems to specific technologies can be a challenge. Adopting AI requires a great deal of expertise, testing and expensive resources. Think of the SQL standard for accessing and working with databases. I think an AI-related equivalent to the SQL standard is still far away. As it stands, there are some proposed standards that show promise but none that is easy to use and apply to multiple AI problems/use cases.
    This lack of AI standards can contribute to a lack of AI transparency, and there is no AI algorithm that is 100 percent correct all the time. In other words, we may not understand exactly why AI made a particular decision or arrived at a specific result. This is problematic in search, as if we don’t know why the system arrived at a particular result, we can’t tune or change the configuration. If the wrong product is displayed, that means a lost business opportunity. Businesses need a way to not only understand search results but to tune and validate a specific query for relevance to their specific brand. Ideally, non-technical business owners would be able to see why their transparent AI ranked results the way it did. Meanwhile, these business owners would be able to accept, reject and/or overwrite the AI suggestion based on user behavior.
  2. AI is not an automatic “cure all” and creating an AI-powered search solution requires extensive testing, experimentation and evolution. The first step to building an AI-powered search solution is having a clear definition of the problem you want to solve. One solution may map to one problem, but not another – and that requires you to redo the experimentation process. Netflix, for example, developed a specific algorithm (through extensive resources and a large volume of data) that has been optimized for one specific problem (recommending specific TV shows). Netflix can continue to optimize this algorithm again and again with new customers. Companies can also buy an off-the-shelf solution that contains existing software that includes AI techniques for a specific problem (an HR solution for analyzing job candidate resumes, for example). The challenge is to decide if your AI search problem requires a customized, off-the-shelf or hybrid approach (more on that later). 
  3. AI-powered search is a constantly changing work in progress, as customer behavior constantly changes. When customers search a brand’s site, it’s more of a journey to buy rather than a question-answer transaction. One specific query can mean different things depending on context, situation, and user. Normally, the more time a customer spends to find their desired product indicates poor relevance, while better relevance should yield the perfect result instantly. When we think about discovery, we don’t look at the same metric. We look more at the customer’s interaction with the product – and how the customer arrived at their final choice. We can propose a select number of items we think a customer would like, and the more personalized to the user, location and device, the better. She may then click on two items before making a final purchase. Ideally, we would propose one item if we were certain it would trigger the desired action.
    What is needed for AI to compute a relevant answer (or potential answers) for the customer’s discovery experience, as well as make further relevant recommendations of complementary products or accessories? Many signals and a feedback loop. We need to take into account the customer’s behavior and individual actions. This should power data enrichment (continually cleaning, enhancing and updating data), which gives us a more complete view of a customer. And this, in turn, maintains an ongoing, real-time feedback loop with the customer that fuels AI-powered search and query understanding. However, each piece of this puzzle requires different AI tools; no one technique solves everything at once, all the time.

Considering the above potential barriers to AI-powered search, how can companies begin to address these issues? How can companies evaluate which type of AI implementation may be right for their business? 

The first step involves identifying a small set of problems specific to the business that AI can solve. From there, we can decide if buying off-the-shelf software is best, if we should build our own solution in-house, or if we should take a “build and buy” approach. In that scenario, we can build only that part of the solution that is unique for the business. Here, the growing popularity of API-based solutions can make all the difference for developers. APIs meet developers where they are, allowing them to “buy to build faster” by reducing the number of back-end processes and allowing them to get back to building, experimenting and iterating. Ultimately, we should have one objective: To provide a digital experience that guides customers to the right information when, where and how they need it.

About the author
Julien Lemoine

Co-founder & former CTO at Algolia

githublinkedintwitter

Recommended Articles

Powered byAlgolia Algolia Recommend

How Algolia uses AI to deliver smarter search
ai

Julien Lemoine

Co-founder & CTO at Algolia

What is AI-powered site search?
ai

John Stewart

VP Corporate Marketing

What is explainable AI, and why is transparency so important for machine-learning solutions?
ai

Vincent Caruana

Sr. SEO Web Digital Marketing Manager