Introducing new developer-friendly pricing
Hey there, developers! At Algolia, we believe everyone should have the opportunity to bring a best-in-class search experience ...
VP of Product Growth
Hey there, developers! At Algolia, we believe everyone should have the opportunity to bring a best-in-class search experience ...
VP of Product Growth
Eye-catching mannequins. Bright, colorful signage. Soothing interior design. Exquisite product displays. In short, amazing store merchandising. For shoppers in ...
Search and Discovery writer
Ingesting data should be easy, but all too often, it can be anything but. Data can come in many different ...
Staff Product Manager, Data Connectivity
Everyday there are new messages in the market about what technology to buy, how to position your company against the ...
Chief Strategic Business Development Officer
Done any shopping on an ecommerce website lately? If so, you know a smooth online shopper experience is not optional ...
Sr. SEO Web Digital Marketing Manager
It’s hard to imagine having to think about Black Friday less than 4 months out from the previous one ...
Chief Strategic Business Development Officer
What happens if an online shopper arrives on your ecommerce site and: Your navigation provides no obvious or helpful direction ...
Search and Discovery writer
In part 1 of this blog-post series, we looked at app interface design obstacles in the mobile search experience ...
Sr. SEO Web Digital Marketing Manager
In part 1 of this series on mobile UX design, we talked about how designing a successful search user experience ...
Sr. SEO Web Digital Marketing Manager
Welcome to our three-part series on creating winning search UX design for your mobile app! This post identifies developer ...
Sr. SEO Web Digital Marketing Manager
National No Code Day falls on March 11th in the United States to encourage more people to build things online ...
Consulting powerhouse McKinsey is bullish on AI. Their forecasting estimates that AI could add around 16 percent to global GDP ...
Chief Revenue Officer at Algolia
How do you sell a product when your customers can’t assess it in person: pick it up, feel what ...
Search and Discovery writer
It is clear that for online businesses and especially for Marketplaces, content discovery can be especially challenging due to the ...
Chief Product Officer
This 2-part feature dives into the transformational journey made by digital merchandising to drive positive ecommerce experiences. Part 1 ...
Director of Product Marketing, Ecommerce
A social media user is shown snapshots of people he may know based on face-recognition technology and asked if ...
Search and Discovery writer
How’s your company’s organizational knowledge holding up? In other words, if an employee were to leave, would they ...
Search and Discovery writer
Recommendations can make or break an online shopping experience. In a world full of endless choices and infinite scrolling, recommendations ...
Oct 25th 2021 engineering
We continue our series on using AI-powered recommendations in the back office. When we built Algolia Recommend, we initially targeted product recommendations for ecommerce customers. But our Recommend API covers many other use cases. This article is about how to improve the design of your online and back-office forms, as seen on a typical website or Salesforce UI.
For customers and employees, filling out electronic forms requires patience and attentiveness. In the worst of cases, it also requires large amounts of clicks and screen changes and a leap of imagination to find the appropriate action to take.
Employees are the principal victims of convoluted electronic forms. They interact with forms every day, with many different user interfaces (UI) that change from company to company, system to system, profession to profession, and task to task. If employees are lucky, they have developers and designers to create the UI, but numerous requirements and system constraints hinder good design. Often to the rescue is user testing – but this is costly and takes time, and user actions are not always easy to interpret.
In this article, we imagine Algolia Recommend as automating the user testing and UI design process. It can capture combinations of actions and build models around those combinations. These models, when fed regularly with employee typing and button clicks (captured as analytics data), can very quickly generate such recommendations as:
In a previous article in this series, we discussed how Recommend relies on two APIs:
Note that Recommendations can find more than frequent combinations. Equally powerful is the notion of related entry fields. Combining related fields opens up new possibilities of user design that we don’t discuss in this article.
First, you need to capture the fields users tend to modify together. Then, Algolia models that data. The models allow the Recommend engine to compile a complete list of frequently used fields together. With that report, your designers can start to rearrange or remove fields on a single screen or rethink how the fields are distributed across workflows and systems.
For example, airlines already know how to ask only three questions to start a reservation process: airports, dates, and the number of passengers. Unfortunately, most companies don’t know which three questions to ask, so they splatter 10s of questions on the screen, hoping users will figure out for themselves the appropriate fields. Intranet applications with only 10 fields are a rarity – it’s more like 15 to 30.
Let’s see how Recommend can simplify form interactivity.
Send an insights event that tells the Recommend engine that text fields 1, 3, and 8 were modified together:
convertedObjectIDs( 'on_save_form', 'ui_forms_index', ["field1_id", "field3_id", "field8_id"] );
Return fields associated with Field 1 on Screen 1:
$recommendations = $recommendClient->getFrequentlyBoughtTogether([ [ 'indexName' => 'ui_forms_index', 'objectID' => 'field1_id', ], ]);
Two things to note here:
Here’s a report that you can generate from this use case:
Target Field | Frequently Edited Together |
Field 1 | Fields 3, 8, 11 |
Field 2 | Fields 3, 9, 20 |
Field X | Fields a,b,c, .. |
With a little pivoting and cross-referencing, you can discover patterns that suggest different placement of the fields. Maybe you’ll put the frequent field pairings adjacent to each other.
Continuing with the previous example, let’s add several screens. You’ll need to change the data to reflect the larger context of more than one screen. To do this, you’ll need to make only one change:
convertedObjectIDs( 'on_save_form', 'ui_forms_index', ["screen1.field1_id", "screen2.field1_id", "screen2.field2_id"] );
Return fields associated with Field 1 on Screen 1:
$recommendations = $recommendClient->getFrequentlyBoughtTogether([ [ 'indexName' => 'ui_forms_index', 'objectID' => 'screen1.field1_id', ], ]);
As you can see, now we know that field 1 on screen 1 is often combined with modifications on fields 1 and 2 on screen 2. You’ll need to perform that extra parsing to distribute the correct screen classification.
Going further: what’s to stop us from capturing patterns across multiple systems? You’ll just need to specify the “system” in which the field exists. However, the real trick is the event: the “on save” event typically doesn’t work across multiple systems. We could use a known endpoint in a system workflow, but we’ll use time instead.
The solution proposed here is to use a session timeout.
convertedObjectIDs( 'session_time_out', 'ui_forms_index', ["system1.screen1.field1_id", "system2.screen1.field1_id", "system2.screen2.field2_id"] );
Return fields associated with Field 1 on Screen 1 of System 1:
$recommendations = $recommendClient->getFrequentlyBoughtTogether([ [ 'indexName' => 'ui_forms_index', 'objectID' => 'system1.screen1.field1_id', ], ]);
This is only the beginning of how you can use AI-driven recommendations to analyze user activity. I am sure you can think of more. This is the beauty of it all: recommendations are a generic tool that can be adapted easily with imagination and some thoughtfulness.
Powered by Algolia Recommend