Haystack EU 2023: Learnings and reflections from our team
If you have built search experiences, you know creating a great search experience is a never ending process: the data ...
Senior ML Engineer
If you have built search experiences, you know creating a great search experience is a never ending process: the data ...
Senior ML Engineer
Just as with a school kid who’s left unsupervised when their teacher steps outside to deal with a distraction ...
Search and Discovery writer
Back in May 2014, we added support for synonyms inside Algolia. We took our time to really nail the details ...
Technical Writer
You’re running an ecommerce site for an electronics retailer, and you’re seeing in your analytics that users keep ...
Technical Writer
What do OpenAI and DeepMind have in common? Give up? These innovative organizations both utilize technology known as transformer models ...
Sr. SEO Web Digital Marketing Manager
As a successful in-store boutique manager in 1994, you might have had your merchandisers adorn your street-facing storefront ...
Search and Discovery writer
At Algolia, our business is more than search and discovery, it’s the continuous improvement of site search. If you ...
JavaScript Library Developer
Analytics brings math and data into the otherwise very subjective world of ecommerce. It helps companies quantify how well their ...
Technical Writer
Amid all the momentous developments in the generative AI data space, are you a data scientist struggling to make sense ...
Sr. SEO Web Digital Marketing Manager
Fashion ideas for guest aunt informal summer wedding Funny movie to get my bored high-schoolers off their addictive gaming ...
Sr. SEO Web Digital Marketing Manager
Imagine you're visiting an online art gallery and a specific painting catches your eye. You'd like to find ...
Senior Software Engineer
At Algolia, our commitment to making a positive impact extends far beyond the digital landscape. We believe in the power ...
Senior Manager, People Success
In today’s post-pandemic-yet-still-super-competitive retail landscape, gaining, keeping, and converting ecommerce customers is no easy ...
Sr. SEO Web Digital Marketing Manager
There are few atmospheres as unique as that of a conference exhibit hall: the air always filled with an indescribable ...
Marketing Content Manager
To consider the question of what vectors are, it helps to be a mathematician, or at least someone who’s ...
Search and Discovery writer
My first foray into programming was writing Python on a Raspberry Pi to flicker some LED lights — it wasn’t ...
Technical Writer
How well do you know the world of modern ecommerce? With retail ecommerce sales having exceeded $5.7 trillion worldwide ...
Sr. SEO Web Digital Marketing Manager
In a world of artificial intelligence (AI), data serves as the foundation for machine learning (ML) models to identify trends ...
Director of AI Engineering
We recently redesigned our analytics API from the ground up, in order to provide near real-time analytics to our customers on billions of search queries per day. Here’s how we did it.
Our first analytics system started as a small side project. It consisted of batches of compressed log files being sent from all our search servers to a central storage service, before being pushed to an Elasticsearch cluster, from which we served the analytics queries.
Naturally, this system had its limitations. Firstly, we needed to pave the way for our new Click Analytics feature, where we wanted to leverage a more relational model. Doing so with Elasticsearch, where documents are independent, would have been too cumbersome.
Secondly, with dozens of billions of records to handle across many nodes, managing such cluster was becoming a full-time job.
Our search analytics provides our customers with insights about how their search is being used. These insights can easily grow in size. They range from overviews, like the number of searches or the number of unique users, to actionable business insights such as ‘What categories are users most interested in?’ or ‘Which queries return no results?’. All of these can also be done over specific time ranges which, in some instances, can be very very large.
What follows is an explanation of the tech choices we made when rebuilding our analytics from the ground up, as well as an overview of some of the design principles we put to use.
The top level requirements we needed to meet were:
We started by evaluating powerhouses like RedShift, BigQuery and ClickHouse. While they are certainly good options for data warehousing, we did not find them good enough for real-time analytics workflow.
In our case, the focus is on performing sub-second analytics queries rather than long running analysis.
However, achieving sub-second aggregation performances on very large datasets is prohibitively expensive with RedShift, and not possible with BigQuery.
Additionally, another issue we found with BigQuery was that the pricing is driven by usage, not storage. As such, we didn’t consider it a safe choice to power a public API.
For ClickHouse, we were curious to try it out but ultimately found that there would be a lot of extra engineering overhead required to host, maintain and fine tune it.
Finally, our search led us to Citus Data and their Citus extension for PostgreSQL, that makes it seamless to scale Postgres by distributing tables and queries across multiple nodes.
Citus Data also provides several extensions that are well suited to real-time analytics such as HLL (HyperLogLog) and TopN. The former is an algorithm for fast approximative distinct count, and the latter acts like a heap, which allows keeping top items sorted by frequency in a JSONB field.
If we opted for this solution, we could spread our customers’ data across many nodes, leverage collocation, and precompute metrics. As a bonus, we would still get the benefit of having a relational database running up-to-date Postgres instances.
With the data store decision made, here’s how the rest of our analytics solution works in practice.
Achieving sub-second analytical queries doesn’t come out of the box though. We achieve this both by distributing data across shards and by using a roll-up approach.
To achieve this we have to perform the following steps:
We take advantage of the Postgres COPY command to insert batch events into Citus. As we’ll see below, we never query the raw data directly so those tables can stay very simple schema-wise.
Without a lot of indices to update, the performance of insertion operations is quite impressive. Citus advertises ingestion of up to 7M rows per second (that’s 600B rows per day!) and our own benchmarks showed similar trends.
We distribute our data by customer. A single customer’s data lives on the same shard so we can take advantage of collocation. A request targeting a single customer app will only ever need to target a single Postgres instance.
We don’t serve metrics from raw events. At some point, datasets, even for a single customer, can become too large to process on the fly if you’re looking for sub-second response time.
As a rule of thumb, you can expect to aggregate 1M rows per second per core with PostgreSQL.
We instead use roll-up tables. Rollup tables hold pre-computed metrics for a given time range.
As we’ve seen in the introduction, we often need to return tops and distinct count. This is made easy thanks to the TOPN and HLL extensions mentioned above.
Here’s a simplified rollup function that covers several use cases:
This function aggregates all queries received in a given time range into buckets of 5 minutes, and computes their count, the unique number of users (using HLL), and keeps the top queries, along with their respective count (using TOPN).
This function will be executed concurrently across all nodes.
For our analytics solution we have several levels of rollups. We aggregate events every 5 minutes, and further aggregate them by day. We do this for several reasons:
A consequence of such an approach is that once the data is rolled up, we can delete it. We don’t need to keep terabytes of raw events in Citus to serve metrics and deleting data is made easy thanks to Citus’ ability to parallelize deletes across nodes.
The API targets the roll-up tables, never the raw tables. If we compare the number of rows from the raw tables and the roll-up tables, we see a compression ratio ranging from 50,000 to 150 on average (this of course varies based on the dimension picked for the aggregation).
This is what makes this approach work so well. Since ultimately our metrics are pre-computed per day, we can easily understand why we get results in milliseconds across virtually any time range: the amount of data to scan at query-time is trivial.
For instance, to get the count of queries for a given customer for the past week, it’s a quick index scan to fetch 7 rows living on the same instance followed by a sum.
To get the top 1000 searches for the past month, we fetch 30 rows, unnest the top items, and further aggregate them into our final top 1000.
Here are a few simplified example queries to demonstrate:
To get the count of queries:
Since our metrics first live in the 5min rollup table before being merged into the daily roll-up, we query both tables and union their result at query time.
To get a distinct count of users, we take advantage of the HLL type which can compute the intersection of several HLL field.
SELECT hll_cardinality(sum(user_count))::bigint FROM ... WHERE ...
And last, but not least, here’s how fetching the top 10 queries would look:
SELECT (topn(topn_union_agg(top_queries), 10)).* FROM ... WHERE ...
All our analytics queries follow this pattern, where only a minimal aggregation logic is performed at query time.
Let’s take a step back and have a look at the whole system:
Before actually inserting our queries into Citus, we first aggregate keystrokes into queries. Most of our customers have an InstantSearch implementation. With InstantSearch, results are obtained as you type. This is a great user experience that under the hood generates many API requests for a given search. For example, searching for ‘Algolia’ may result in up to 7 queries (A, Al, Alg… etc). When it comes to analytics, we only want to provide insights on full queries (someone searched for Algolia once), not the intermediate keystrokes.
To ensure this is the case, we have a pipeline that processes our logs to aggregate the sequence of keystrokes into searches, before pushing them straight into Citus.
We rebuilt this pipeline using Go as our language of choice. We’ve always had a microservice approach at Algolia, and over the past year we started building most our services (with the exception of our search engine) in Go and have been very satisfied so far, both in terms of performance and productivity.
To complete the picture, we rely on Kubernetes on GKE for orchestration, and Google Pub/Sub for communication across services.
Thanks to Citus and a roll-up based approach, our analytics handles billions of searches per day across thousands of customers, a number that is rapidly growing. So far, we’re very pleased by the performance and scalability of the system and are looking forward to building more products on top of it.
Check out how we’ve migrated our Citus on AWS to Citus on Azure without impacting our users or codebase.
It's extensive, clear, and, of course, searchable.
Powered by Algolia Recommend