Feature Spotlight: Query Rules
You’re running an ecommerce site for an electronics retailer, and you’re seeing in your analytics that users keep ...
Technical Writer
You’re running an ecommerce site for an electronics retailer, and you’re seeing in your analytics that users keep ...
Technical Writer
What do OpenAI and DeepMind have in common? Give up? These innovative organizations both utilize technology known as transformer models ...
Sr. SEO Web Digital Marketing Manager
As a successful in-store boutique manager in 1994, you might have had your merchandisers adorn your street-facing storefront ...
Search and Discovery writer
At Algolia, our business is more than search and discovery, it’s the continuous improvement of site search. If you ...
JavaScript Library Developer
Analytics brings math and data into the otherwise very subjective world of ecommerce. It helps companies quantify how well their ...
Technical Writer
Amid all the momentous developments in the generative AI data space, are you a data scientist struggling to make sense ...
Sr. SEO Web Digital Marketing Manager
Fashion ideas for guest aunt informal summer wedding Funny movie to get my bored high-schoolers off their addictive gaming ...
Sr. SEO Web Digital Marketing Manager
Imagine you're visiting an online art gallery and a specific painting catches your eye. You'd like to find ...
Senior Software Engineer
At Algolia, our commitment to making a positive impact extends far beyond the digital landscape. We believe in the power ...
Senior Manager, People Success
In today’s post-pandemic-yet-still-super-competitive retail landscape, gaining, keeping, and converting ecommerce customers is no easy ...
Sr. SEO Web Digital Marketing Manager
There are few atmospheres as unique as that of a conference exhibit hall: the air always filled with an indescribable ...
Marketing Content Manager
To consider the question of what vectors are, it helps to be a mathematician, or at least someone who’s ...
Search and Discovery writer
My first foray into programming was writing Python on a Raspberry Pi to flicker some LED lights — it wasn’t ...
Technical Writer
How well do you know the world of modern ecommerce? With retail ecommerce sales having exceeded $5.7 trillion worldwide ...
Sr. SEO Web Digital Marketing Manager
In a world of artificial intelligence (AI), data serves as the foundation for machine learning (ML) models to identify trends ...
Director of AI Engineering
Imagine you’re a leading healthcare provider that performs extensive data collection as part of your patient management. You’re ...
Search and Discovery writer
In an era where customer experience reigns supreme, achieving digital excellence is a worthy goal for retail leaders. But what ...
Marketing Content Manager
Just a few years ago it would have required considerable resources to build a new AI service from scratch. Of ...
VP, Engineering
As a SaaS company, our software and infrastructure must stay ahead of the competition. And it must be reliable: server & API availability are as important as innovation. In other words, while we need to deliver product updates and new features as quickly and as often as possible, we also need to build resilient software by testing everything – which takes away time from innovating.
Experience has taught us how to balance these competing needs: test in production.
Resilient testing in production is the process of deploying new code in production, and “testing” it using the production traffic directly instead of running an exhaustive test suite. This is risky. You usually want to avoid it, but as your application grows, it becomes impossible to test everything.
In the Algolia engine, we currently have more than twenty query parameters. If they were all boolean flags, testing all cases would require a million tests: twenty parameters, with two possible values per each, that’s 2^20 possibilities.
When it comes to the time that testing takes, there are three things to take into account:
Writing a million tests is already a long process, but once they’re there, these tests become part of the project. As such, they require maintenance like the rest of the source code, so each software iteration now requires more work.
Now let’s imagine that your team is large enough to write and maintain those tests, you still need to run them. If each test only takes ten milliseconds, it adds up to 2h45m to run. Any update in the code now takes 2h45m to validate.
Our customers buy our product for the existing set of features, but also the upcoming services. They expect us to release new features regularly so we can help them grow, to be innovative and resilient. Therefore, we need to be efficient.
When we implement a new feature, we only write tests to validate the implementation and to detect obvious corner cases. To thoroughly verify the functionality, we decided to put a deployment setup in place that allows us to test in production with minimal impact for our customers in case of a bug. This way, we can deliver new features on time.
Let’s take a concrete example: we recently rewrote the highlighting feature of Algolia. If we wanted to test it exhaustively, this would mean combining the one million tests needed for all parameters with all the possible Unicode characters (over a million). This adds up to over a billion tests. If each test only took a millisecond to run, this test suite itself would take 11 days to complete.
We had to find a better solution. Therefore, instead of maintaining billions of tests and significantly slowing down our release process, we decided to test in production.
Our main concern was to avoid impacting customers, so we defined what we needed to put such a setup in place:
Anyone who subscribes to Algolia from our website gets access to a three-node cluster. Each node owns 100% of the data and can serve queries independently, which provides a resilient setup. When you consider an average availability of 95% with bare metal servers, this setup allows us to provide 99.987% availability. For your Algolia service to be completely down, each server would need to be down. The probability is, therefore, 5% of 5% of 5%, or 0.0125% of potential downtime.
Now, even with this setup, a software bug could cause a service outage. For that reason, we have put in place a progressive deployment process of the search engine which spans across three days. This partial deploy gives us enough time to detect issues.
If there’s a bug in the new version, our API clients take over with their retry strategy. If they target a broken node, they transparently retry with another one until they get a successful response. From the end user’s perspective, the issue is invisible.
When we deployed the rewrite of the highlighting feature, we detected a normalization issue. The goal was for it to convert text in a canonical form to simplify comparison between different inputs. Normalized forms are usually shorter or as long as the original form, and that’s what the highlighting code was expecting. However, there are some characters for which the normalized form is longer: the ß (German sharp S) is normalized into ss. During the rewrite, we added runtime pre-conditions checks to ensure the normalized size was shorter or equal, and the code behaved as expected. This is what revealed the bug.
When we deployed the new version on the first node, it immediately stopped responding to queries that were generating a longer normalized form. However, thanks to our API client’s retry strategy, none of our customers noticed it. On our end, our monitoring system triggered an alert, and we quickly reverted the change to stabilize the engine. It left us all the necessary time to properly understand the issue, write a proper fix, and the corresponding tests.
There are three crucial elements that you need when you want to test in production:
Nowadays, configuring a replicated infrastructure is straightforward: all cloud providers offer load balancers in front of multiple VMs. In our case, we handle the replication of the search engine data at the cluster level, with each node owning 100% of the data. This way, nodes can reply to queries independently.
This part highly depends on the software you’re building. In the Algolia engine, we have plenty of health checks within the code to verify the pre-conditions of a function and expected state. When we come to an unexpected state, the engine stops processing to avoid returning corrupted data. It forces the API clients to retry on a different node transparently.
Last and not least, the deployment process’s main goal here is to release new versions while controlling risks progressively.
At Algolia, we’ve split our infrastructure into four environments: testing, staging, production, and safe. Each environment has a different SLA:
In our deployment strategy, we leverage those different environments to mitigate risk. This means we first deploy on environments with the least impact for our customers.
In addition to the different environments, we also leveraged the replication factor of three, and created a deployment process in twelve steps:
The first step allows us to detect issues in the code that handles the distributed system and the interactions between nodes within a cluster.
Then, deploying on each node one by one lets us assess whether a cluster can support two different versions at the same time and if the code is stable.
The rationale behind waiting for a whole day before deploying on the next environment is that it leaves enough time to detect performance issues, data corruption, or time-based issues. Once we reach this step, we’ve detected most of the problems. The rest of the progressive deployment is here to help us identify uncaught breaking changes.
Whenever we detect a bug, we immediately revert the new version. This way, we can set the service back into a stable state, and this gives us enough time to fix the issue and add the corresponding tests correctly.
With this approach, our test suite is driven by customer usage. This makes it particularly efficient and allows us to release a new version of the engine every week to sustain the needs of our customers, even with such a large codebase.
The startup ecosystem is challenging. Small teams need to find efficient strategies to create better products than big companies with large teams.
Regularly releasing new features is as important as having a stable product with a great user experience that answers the demand of customers. This need for efficiency is the reason why we must find a middle ground between writing enough tests to have good feature coverage, and being able to release often.
You should always be careful with adding more tests because they are time-consuming: it takes time to write them, maintain them, and run them. So how do you know when to write tests? The ninety-ninety rule applies: it’s usually straightforward to test 90% of a feature, and the last 10% takes as much time. That’s why it’s crucial to handle the remaining 10% based on customer usage, instead of pushing for exhaustive coverage.
To mitigate the risk, make sure you take the time to design a piece of software and an infrastructure that supports tests in production, with the least possible impact on customers.
Engineering Manager
Powered by Algolia Recommend