Search by Algolia
Feature Spotlight: Query Rules
product

Feature Spotlight: Query Rules

You’re running an ecommerce site for an electronics retailer, and you’re seeing in your analytics that users keep ...

Jaden Baptista

Technical Writer

An introduction to transformer models in neural networks and machine learning
ai

An introduction to transformer models in neural networks and machine learning

What do OpenAI and DeepMind have in common? Give up? These innovative organizations both utilize technology known as transformer models ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

What’s the secret of online merchandise management? Giving store merchandisers the right tools
e-commerce

What’s the secret of online merchandise management? Giving store merchandisers the right tools

As a successful in-store boutique manager in 1994, you might have had your merchandisers adorn your street-facing storefront ...

Catherine Dee

Search and Discovery writer

New features and capabilities in Algolia InstantSearch
engineering

New features and capabilities in Algolia InstantSearch

At Algolia, our business is more than search and discovery, it’s the continuous improvement of site search. If you ...

Haroen Viaene

JavaScript Library Developer

Feature Spotlight: Analytics
product

Feature Spotlight: Analytics

Analytics brings math and data into the otherwise very subjective world of ecommerce. It helps companies quantify how well their ...

Jaden Baptista

Technical Writer

What is clustering?
ai

What is clustering?

Amid all the momentous developments in the generative AI data space, are you a data scientist struggling to make sense ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

What is a vector database?
product

What is a vector database?

Fashion ideas for guest aunt informal summer wedding Funny movie to get my bored high-schoolers off their addictive gaming ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Unlock the power of image-based recommendation with Algolia’s LookingSimilar
engineering

Unlock the power of image-based recommendation with Algolia’s LookingSimilar

Imagine you're visiting an online art gallery and a specific painting catches your eye. You'd like to find ...

Raed Chammam

Senior Software Engineer

Empowering Change: Algolia's Global Giving Days Impact Report
algolia

Empowering Change: Algolia's Global Giving Days Impact Report

At Algolia, our commitment to making a positive impact extends far beyond the digital landscape. We believe in the power ...

Amy Ciba

Senior Manager, People Success

Retail personalization: Give your ecommerce customers the tailored shopping experiences they expect and deserve
e-commerce

Retail personalization: Give your ecommerce customers the tailored shopping experiences they expect and deserve

In today’s post-pandemic-yet-still-super-competitive retail landscape, gaining, keeping, and converting ecommerce customers is no easy ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Algolia x eTail | A busy few days in Boston
algolia

Algolia x eTail | A busy few days in Boston

There are few atmospheres as unique as that of a conference exhibit hall: the air always filled with an indescribable ...

Marissa Wharton

Marketing Content Manager

What are vectors and how do they apply to machine learning?
ai

What are vectors and how do they apply to machine learning?

To consider the question of what vectors are, it helps to be a mathematician, or at least someone who’s ...

Catherine Dee

Search and Discovery writer

Why imports are important in JS
engineering

Why imports are important in JS

My first foray into programming was writing Python on a Raspberry Pi to flicker some LED lights — it wasn’t ...

Jaden Baptista

Technical Writer

What is ecommerce? The complete guide
e-commerce

What is ecommerce? The complete guide

How well do you know the world of modern ecommerce?  With retail ecommerce sales having exceeded $5.7 trillion worldwide ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Data is king: The role of data capture and integrity in embracing AI
ai

Data is king: The role of data capture and integrity in embracing AI

In a world of artificial intelligence (AI), data serves as the foundation for machine learning (ML) models to identify trends ...

Alexandra Anghel

Director of AI Engineering

What are data privacy and data security? Why are they  critical for an organization?
product

What are data privacy and data security? Why are they critical for an organization?

Imagine you’re a leading healthcare provider that performs extensive data collection as part of your patient management. You’re ...

Catherine Dee

Search and Discovery writer

Achieving digital excellence: Algolia's insights from the GDS Retail Digital Summit
e-commerce

Achieving digital excellence: Algolia's insights from the GDS Retail Digital Summit

In an era where customer experience reigns supreme, achieving digital excellence is a worthy goal for retail leaders. But what ...

Marissa Wharton

Marketing Content Manager

AI at scale: Managing ML models over time & across use cases
ai

AI at scale: Managing ML models over time & across use cases

Just a few years ago it would have required considerable resources to build a new AI service from scratch. Of ...

Benoit Perrot

VP, Engineering

Looking for something?

facebookfacebooklinkedinlinkedintwittertwittermailmail

Search has changed a lot since the early days of the Internet. Users now expect fast and personalized results when exploring a website or search engine, and they’re less likely to experiment with numerous different keywords just to find what they’re looking for. With the rise of new computing technologies, websites are beginning to offer a more natural search experience by providing innovative ways to explore content — primarily through natural language search. Search is quickly becoming a two-way conversation.

 

What is natural language search?

Natural language search allows users to speak or type into a device using their everyday language rather than keywords. Users can use full sentences in their native language as if they are speaking to another human, leaving the computer to transform the query into something it can understand.

 

Natural language search vs. keyword search

Thanks to Google and other search engines, users have become accustomed to using keyword searches. But keyword searches are not an intuitive way for users to ask questions, and users are actually pretty bad at using them to find what they need. They force users to strip out question words and other connective language to form literal text strings that the search engine can use to query data. It also may require effort on the part of the business to mine intent from keyword searches.

While keyword search systems typically do allow for some form of compound questions, they often force users to manually construct complex search structure. For instance, rather than asking a simple question such as “What’s a vegetarian recipe with tomatoes and cheese?”, you’d be expected to search for something more like ”vegetarian Recipe” tomato cheese.

With the rise of digital voice assistants such as Siri and Alexa, however, people are becoming accustomed to having conversations with their devices in full and grammatically complex sentences. The effect is that many users now form queries like questions over different devices and platforms. Users are becoming accustomed to using natural language to get information and expect fast results. Therefore, it is essential that search systems of all types can begin to accept natural language searches.

 

History of natural language search

Although advances in computer science and computation speed have enabled breakthroughs in natural language search, attempts at implementing these systems actually go back to the early days of the internet and web.

In 1993, the MIT Artificial Intelligence Lab developed the START Natural Language Question Answering System. While it wasn’t technically an Internet search engine, the START system allowed users to search an online encyclopedia of information using full natural language sentences. 

A few years later in 1996, Ask Jeeves was launched. This was the first search engine that allowed users to explore the web through natural language. It turned out, however, that Jeeves was a bit ahead of his time. Pretty soon thereafter, Google launched a keyword search engine and quickly built a powerful system with impressive relevance scoring that easily beat out the results of its competitors. 

Nearly two decades later, Google and other search engines started to realize the value of natural language search and further develop the experience that Ask Jeeves was trying to provide.

 

How natural language search works

Natural language search uses an advanced computer science technique called natural language processing (NLP). This process uses vast amounts of data to run statistical and machine learning models to infer meaning in complex grammatical sentences. This has become much more feasible over the last decade as internet companies collect more and more data. Computing power is growing at exponential rates to allow for processing this data.

The power of natural language comes from the ability to not only parse questions, but also to break down meaning in compound and contextual-based sentences. For example, if a customer asked an e-commerce store “What size t-shirts do you have for my kids?”, the search system can determine that the customer is looking for t-shirts in the kids category and wants to know what sizes are in stock. If the store has past purchase and search history on this customer, it may even be able to determine the optimal size of clothes and preferred styles.

No longer is natural language search simply a tool for obtaining basic facts, like the weather, from a personal assistant. More and more, consumers are beginning their shopping and brand exploration journeys directly through voice assistants or searching by voice on mobile. It is essential, therefore, that companies ensure they are optimizing their technologies and sales funnels to ensure that these consumers are able to engage with them in conversational language. 

 

Four tips for designing a natural language search-friendly site

When optimizing the site for natural language search, many sites overly focus on SEO and fail to prioritize the user experience. In the end, however, the goal of natural language search is to provide customers with a helpful, intuitive, and engaging interface to explore the site. Here are some design tips that keep the user experience in mind:

 

1. Design a voice search engine that reduces the haystack

Search systems should take advantage of all information and context that they have available. User profiles and past searches, for instance, can help provide valuable information about what a user may want. This is particularly useful if a voice query is a bit vague, as the search engine can infer meaning based on context. Furthermore, setting up filters to segment indexed data by predefined categories can help to refine searches to provide users more relevant results.

 

2. Do research and understand how users perform conversational searches

While natural language processing tools are powerful for understanding general meaning, most businesses will find that there are nuances in their industries or domains that need to be fine-tuned. Reviewing and regularly analyzing user searches can help expose these trends in searches so that the models can be optimized accordingly.

 

3. Test the site’s content for ranking with natural search queries

In addition to reviewing search accuracy, it is important that the actual website content is built in such a way that the natural language search engines can correctly match the queries. Try running common search queries to see how the content is being ranked and gradually tune the content to see how it affects the results.

 

4. Use everyday language in site content and answer customer needs

Using conversational language in site content will help ensure that users questions and needs are being answered. For common questions that may not be answered directly in the content, it can be useful to add answers to these questions in a FAQ section or dedicated page so that users can still locate the answers.

In summary, designing a natural language search friendly site involves using data to provide context to searches, fine tuning search algorithms and filters to the specific business domain, and structuring site content to fit well with conversational search patterns. These processes will help customers get used to transitioning to a more conversational experience with your website.

 

Is your site natural language search ready?

As consumers continue to move more of their searches to conversational and natural language, businesses must keep up to answer them.See how your site can prepare for the natural language and voice search revolution by watching our webinar “Best practices for building a great voice experience.”

About the author
Dustin Coates

Product and GTM Manager

linkedin

Best practices for building a great voice search experience

76% of companies have realized quantifiable benefits from voice and chat

Best practices for building a great voice search experienceWatch the webinar to learn how

Recommended Articles

Powered byAlgolia Algolia Recommend

What is search relevance?
product

Jon Silvers

Director, Digital Marketing

The (almost) ultimate guide to site search
product

Ivana Ivanovic

Senior Content Strategist

What is conversational search?
product

Dustin Coates

Product and GTM Manager