Search by Algolia
Haystack EU 2023: Learnings and reflections from our team
ai

Haystack EU 2023: Learnings and reflections from our team

If you have built search experiences, you know creating a great search experience is a never ending process: the data ...

Paul-Louis Nech

Senior ML Engineer

What is k-means clustering? An introduction
product

What is k-means clustering? An introduction

Just as with a school kid who’s left unsupervised when their teacher steps outside to deal with a distraction ...

Catherine Dee

Search and Discovery writer

Feature Spotlight: Synonyms
product

Feature Spotlight: Synonyms

Back in May 2014, we added support for synonyms inside Algolia. We took our time to really nail the details ...

Jaden Baptista

Technical Writer

Feature Spotlight: Query Rules
product

Feature Spotlight: Query Rules

You’re running an ecommerce site for an electronics retailer, and you’re seeing in your analytics that users keep ...

Jaden Baptista

Technical Writer

An introduction to transformer models in neural networks and machine learning
ai

An introduction to transformer models in neural networks and machine learning

What do OpenAI and DeepMind have in common? Give up? These innovative organizations both utilize technology known as transformer models ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

What’s the secret of online merchandise management? Giving store merchandisers the right tools
e-commerce

What’s the secret of online merchandise management? Giving store merchandisers the right tools

As a successful in-store boutique manager in 1994, you might have had your merchandisers adorn your street-facing storefront ...

Catherine Dee

Search and Discovery writer

New features and capabilities in Algolia InstantSearch
engineering

New features and capabilities in Algolia InstantSearch

At Algolia, our business is more than search and discovery, it’s the continuous improvement of site search. If you ...

Haroen Viaene

JavaScript Library Developer

Feature Spotlight: Analytics
product

Feature Spotlight: Analytics

Analytics brings math and data into the otherwise very subjective world of ecommerce. It helps companies quantify how well their ...

Jaden Baptista

Technical Writer

What is clustering?
ai

What is clustering?

Amid all the momentous developments in the generative AI data space, are you a data scientist struggling to make sense ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

What is a vector database?
product

What is a vector database?

Fashion ideas for guest aunt informal summer wedding Funny movie to get my bored high-schoolers off their addictive gaming ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Unlock the power of image-based recommendation with Algolia’s LookingSimilar
engineering

Unlock the power of image-based recommendation with Algolia’s LookingSimilar

Imagine you're visiting an online art gallery and a specific painting catches your eye. You'd like to find ...

Raed Chammam

Senior Software Engineer

Empowering Change: Algolia's Global Giving Days Impact Report
algolia

Empowering Change: Algolia's Global Giving Days Impact Report

At Algolia, our commitment to making a positive impact extends far beyond the digital landscape. We believe in the power ...

Amy Ciba

Senior Manager, People Success

Retail personalization: Give your ecommerce customers the tailored shopping experiences they expect and deserve
e-commerce

Retail personalization: Give your ecommerce customers the tailored shopping experiences they expect and deserve

In today’s post-pandemic-yet-still-super-competitive retail landscape, gaining, keeping, and converting ecommerce customers is no easy ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Algolia x eTail | A busy few days in Boston
algolia

Algolia x eTail | A busy few days in Boston

There are few atmospheres as unique as that of a conference exhibit hall: the air always filled with an indescribable ...

Marissa Wharton

Marketing Content Manager

What are vectors and how do they apply to machine learning?
ai

What are vectors and how do they apply to machine learning?

To consider the question of what vectors are, it helps to be a mathematician, or at least someone who’s ...

Catherine Dee

Search and Discovery writer

Why imports are important in JS
engineering

Why imports are important in JS

My first foray into programming was writing Python on a Raspberry Pi to flicker some LED lights — it wasn’t ...

Jaden Baptista

Technical Writer

What is ecommerce? The complete guide
e-commerce

What is ecommerce? The complete guide

How well do you know the world of modern ecommerce?  With retail ecommerce sales having exceeded $5.7 trillion worldwide ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Data is king: The role of data capture and integrity in embracing AI
ai

Data is king: The role of data capture and integrity in embracing AI

In a world of artificial intelligence (AI), data serves as the foundation for machine learning (ML) models to identify trends ...

Alexandra Anghel

Director of AI Engineering

Looking for something?

facebookfacebooklinkedinlinkedintwittertwittermailmail

Natural language understanding, also known as NLU, is a term that refers to how computers understand language spoken and written by people. Yes, that’s almost tautological, but it’s worth stating, because while the architecture of NLU is complex, and the results can be magical, the underlying goal of NLU is very clear. 

For example, there are an estimated 320 billion emails sent every day. That is a lot of natural language created and consumed, and if computers can better understand it, it can help the people who are interacting with those emails. NLU can determine whether an email is spam, if an email is high priority, or if there are other, related, emails to share with the recipient. All of these efforts help people get the most out of email.

The difference between NLU and NLP

Of course, there’s also the ever present question of what the difference is between natural language understanding and natural language processing, or NLP. The answer, again, is in the name. Natural language processing is about processing natural language, or taking text and transforming it into pieces that are easier for computers to use. Some common NLP tasks are removing stop words, segmenting words, or splitting compound words. NLP can also identify parts of speech, or important entities within text.

Getting back to the uses of natural language understanding, we can think of other examples, such as:

  • Summarizing news articles and blog posts
  • Detecting the language of a webpage to offer a translation
  • Identifying key topics in the transcript of a sales call
  • Categorizing the emotions expressed in a tweet
  • A bot to serve customer service requests
  • Serving up the right products for a search request
  • Smart voice assistants

These examples are a small percentage of all the uses for natural language understanding. Anything you can think of where you could benefit from understanding what natural language is communicating is likely a domain for NLU.

Why natural language understanding is important

Natural language understanding is complicated, and seems like magic, because natural language is complicated. Language packs a lot of information in a small amount of space. A clear example of this is the sentence “the trophy would not fit in the brown suitcase because it was too big.” You probably understood immediately what was too big, but this is really difficult for a computer. 

We can’t simply write a program that checks for the phrase “was too big” and understand that the phrase refers to the first item. First, because the phrase might instead be “was too large” or “was too heavy” or “is too big.” Second, because there are formulations where that “rule” falls flat, such as “the brown suitcase would not fit the trophy because it was too big.” There are even phrasings that might even be confusing to people, such as “I didn’t bring the trophy in the brown suitcase because it was too big.” Was the trophy too big for the suitcase, or was the suitcase too big to bring?

Natural language understanding is built atop machine learning

It’s for this reason that NLU relies heavily on machine learning. Machine learning, or ML, can take large amounts of text and learn patterns over time. This is explained by what’s called the distributional hypothesis, which says that you can learn a lot about a word “by the company it keeps.” Take the word “hat.” An ML model might see phrases like, “the man was wearing a hat on his head” or “I put on a hat to keep the sun out of my eyes.” If the model sees phrases like these enough, it starts to pick up on some patterns. Throw it, then, the phrase, “I put on a baseball cap to keep out the sun” and it can sense that just maybe there is a similarity between “hat” and “baseball cap.” Add in the phrase “the man wore a baseball cap on his head” and the similarity is seen to be even stronger.

As you can imagine, these ML models require a lot of data. OpenAI trained their GPT-2 model on 1.5 billion parameters, and followed that up with GPT-3 on 175 billion parameters. This data is often crawled from publicly available data on the web, but is then fine-tuned on a specific dataset. This fine tuning allows the model to better understand a given dataset. For example, fine tuning may help the model to better understand medical data.

Improvements in computing and machine learning have increased the power and capabilities of NLU over the past decade. We can expect over the next few years for NLU to become even more powerful and more integrated into software.

For more information on the applications of Natural Language Understanding, and to learn how you can leverage Algolia’s search and discovery APIs across your site or app, please contact our team of experts.  

About the author
Dustin Coates

Product and GTM Manager

linkedin

Recommended Articles

Powered byAlgolia Algolia Recommend

Advanced keyword search is built upon natural language processing (NLP)
ai

Julien Lemoine

Co-founder & former CTO at Algolia

What is natural language search?
product

Dustin Coates

Product and GTM Manager

What is natural-language understanding?
product

John Stewart

VP Corporate Marketing