Search by Algolia
An introduction to transformer models in neural networks and machine learning
ai

An introduction to transformer models in neural networks and machine learning

What do OpenAI and DeepMind have in common? Give up? These innovative organizations both utilize technology known as transformer models ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

What’s the secret of online merchandise management? Giving store merchandisers the right tools
e-commerce

What’s the secret of online merchandise management? Giving store merchandisers the right tools

As a successful in-store boutique manager in 1994, you might have had your merchandisers adorn your street-facing storefront ...

Catherine Dee

Search and Discovery writer

New features and capabilities in Algolia InstantSearch
engineering

New features and capabilities in Algolia InstantSearch

At Algolia, our business is more than search and discovery, it’s the continuous improvement of site search. If you ...

Haroen Viaene

JavaScript Library Developer

Feature Spotlight: Analytics
product

Feature Spotlight: Analytics

Analytics brings math and data into the otherwise very subjective world of ecommerce. It helps companies quantify how well their ...

Jaden Baptista

Technical Writer

What is clustering?
ai

What is clustering?

Amid all the momentous developments in the generative AI data space, are you a data scientist struggling to make sense ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

What is a vector database?
product

What is a vector database?

Fashion ideas for guest aunt informal summer wedding Funny movie to get my bored high-schoolers off their addictive gaming ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Unlock the power of image-based recommendation with Algolia’s LookingSimilar
engineering

Unlock the power of image-based recommendation with Algolia’s LookingSimilar

Imagine you're visiting an online art gallery and a specific painting catches your eye. You'd like to find ...

Raed Chammam

Senior Software Engineer

Empowering Change: Algolia's Global Giving Days Impact Report
algolia

Empowering Change: Algolia's Global Giving Days Impact Report

At Algolia, our commitment to making a positive impact extends far beyond the digital landscape. We believe in the power ...

Amy Ciba

Senior Manager, People Success

Retail personalization: Give your ecommerce customers the tailored shopping experiences they expect and deserve
e-commerce

Retail personalization: Give your ecommerce customers the tailored shopping experiences they expect and deserve

In today’s post-pandemic-yet-still-super-competitive retail landscape, gaining, keeping, and converting ecommerce customers is no easy ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Algolia x eTail | A busy few days in Boston
algolia

Algolia x eTail | A busy few days in Boston

There are few atmospheres as unique as that of a conference exhibit hall: the air always filled with an indescribable ...

Marissa Wharton

Marketing Content Manager

What are vectors and how do they apply to machine learning?
ai

What are vectors and how do they apply to machine learning?

To consider the question of what vectors are, it helps to be a mathematician, or at least someone who’s ...

Catherine Dee

Search and Discovery writer

Why imports are important in JS
engineering

Why imports are important in JS

My first foray into programming was writing Python on a Raspberry Pi to flicker some LED lights — it wasn’t ...

Jaden Baptista

Technical Writer

What is ecommerce? The complete guide
e-commerce

What is ecommerce? The complete guide

How well do you know the world of modern ecommerce?  With retail ecommerce sales having exceeded $5.7 trillion worldwide ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Data is king: The role of data capture and integrity in embracing AI
ai

Data is king: The role of data capture and integrity in embracing AI

In a world of artificial intelligence (AI), data serves as the foundation for machine learning (ML) models to identify trends ...

Alexandra Anghel

Director of AI Engineering

What are data privacy and data security? Why are they  critical for an organization?
product

What are data privacy and data security? Why are they critical for an organization?

Imagine you’re a leading healthcare provider that performs extensive data collection as part of your patient management. You’re ...

Catherine Dee

Search and Discovery writer

Achieving digital excellence: Algolia's insights from the GDS Retail Digital Summit
e-commerce

Achieving digital excellence: Algolia's insights from the GDS Retail Digital Summit

In an era where customer experience reigns supreme, achieving digital excellence is a worthy goal for retail leaders. But what ...

Marissa Wharton

Marketing Content Manager

AI at scale: Managing ML models over time & across use cases
ai

AI at scale: Managing ML models over time & across use cases

Just a few years ago it would have required considerable resources to build a new AI service from scratch. Of ...

Benoit Perrot

VP, Engineering

How continuous learning lets machine learning  provide increasingly accurate predictions and recommendations
ai

How continuous learning lets machine learning provide increasingly accurate predictions and recommendations

What new data points have you learned lately? Learning is never ending (hence the phrase “lifelong learning”), so chances are ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Looking for something?

facebookfacebooklinkedinlinkedintwittertwittermailmail

You’ve optimized your efforts to drive traffic to your site, but now the hard part begins: optimizing on-site search and discovery to boost conversions. Most on-site search engines still require visitors to use simple one-word queries like “wine” or “Champagne” — and you can easily optimize for those — but fail miserably for longer queries or misspellings. Our own data suggests half or more queries are in the long tail. What if your search engine acted more like a person — actually understood a search query like, “I’d like a good bubbly for Easter Sunday” — and delivered great results?

If you’re not optimizing search for 100% of your catalog, you’re wasting all that effort on generating website traffic and leaving money on the table. This is where AI search comes in.

Let me explain some terminology first. Fat head, chunky middle, and long tail could be the name of a comedy trio. Instead, they refer to different categories of search terms. There’s the “fat head” of search — the most common queries, the “chunky middle” in which millions of on-site search queries can drive meaningful volume on the site, and the “long tail” where billions of search queries generate a relatively smaller search volume.

long tail volume

Most retailers only have resources to optimize for fat head queries for on-site search. It makes perfect sense to spend time to optimize this part of your catalog; that’s where a large number of popular search queries for your catalog are coming from. However, if you only optimize for the fat head, you’re missing a huge opportunity. 

AI search offers a solution to optimizing all three segments simultaneously. It can improve revenue everywhere — without adding any additional work or overhead. In this blog, we’ll look at how AI search works to unlock the long tail. 

Note: this is not an article about SEO, generating organic traffic, or SEO strategy. This article is about how to improve on-site long tail search optimization.  

Query types and keyword search 

Sometimes shoppers know exactly what they want, and sometimes they want to go on a journey of discovery. There are different kinds of queries, and they’re getting longer and more complex, driven in part by voice search. Some search query types include:

  • Broad searches like “pens”
  • Exact searches like “Apple iPhone 14 Pro”
  • Feature-related searches like “men’s brown loafers”
  • Compatibility searches like “appetizers for a gluten-free dinner”
  • Concept searches like “something to be visible while running at night” 
  • Symptom-related searches like “alternative medicine to manage ringing in my ear”

Full-text keyword search engines can do a good job matching the first three above but, without help, the latter three will be a struggle. 

Keyword search engines look for exact or closely-matching phrases. Built-in typo tolerance, synonym libraries, query categorization, and NLP algorithms can help process these kinds of search queries. For example, a search for something like “men’s size 14 basktball shoes” — even with a misspelled word like basketball — can be parsed and filtered to deliver great results. 

Keyword search is fantastic for fat head and many chunky middle queries. But what about more complex queries such as a symptom search? 

Here’s an example: let’s say you sell aspirin and related products on your website. How many ways can your customers search for those products? Here’s ten off the top of my head:

  • Baby aspirin 
  • Headache meds
  • Back pain
  • Joint pain
  • Soreness in my neck
  • Best medicine for back pain
  • Aspirin alternative
  • Something to reduce inflammation
  • NSAID for shoulder and back 
  • Doctor recommended OTC meds for preventing heart attacks

There are easily another hundred long tail queries for these products alone. It’s impossible to pre-determine all of the long tail keywords someone might write. This is where AI vector search can help.

Vector search for long tail keywords

Vector embeddings are one of the main technologies behind AI search. Vector search is a type of search engine that understands concepts and similarities between objects in a search index. A vector search engine would understand that headache, aspirin, muscle soreness, Nurofen, NSAID, and other similar terms and ideas are related. For example, a pharmacy using vector search can propose “aspirin” when someone types in “headache” or “muscle soreness”, because the search engine knows that all these terms are near in meaning.

We published a longer explanation of how vector search engines work, but briefly, vectors are mathematically generated numbers that represent words. Each of these vectors is plotted in a “vector space”, and the search engines use machine learning algorithms to cluster millions of data points across thousands of dimensions to build an understanding of concepts based on how near the words are from each other within the vector space. This can work across different languages, too.

vector space diagram
Image via Medium showing vector space dimensions. Similarity is often measured using Euclidean distance or cosine similarity.

One of the fascinating things about vector search is that it doesn’t rely on keywords or specific search phrases at all. It can frequently deliver great results even if the search term isn’t anywhere to be found on your website. An example might be to search for the term “monarch” and get results for “king” or “queen”. In other words, vector search unlocks the long tail; customers can type in just about anything to get good results. 

In practice, there can be billions of points and thousands of dimensions. Vectors can also be added, subtracted, or multiplied to find meaning and build relationships. One example is espresso – caffeine + steamed milk = decaf cappuccino. Machines might use this kind of calculation to determine an answer or relationship. Search engines could use this capability to determine the largest mountain ranges in an area, determine gender or gender relationship, or identify diet cola alternatives. Those are just a few examples, but there are thousands more! Even if the long tail search phrase has never before been used on your site, a vector search engine will determine relevance. 

Pure vector search has been available for several years, but hasn’t been widely adopted because, as it turns out, it’s expensive to scale and slow. Speed matters to online buyers. Both Amazon and Google have published studies in which they demonstrated that slower page load speeds negatively impact e-commerce conversion rates and reduce customer engagement. 

Amazon showed that every 100 millisecond delay loses 1% of revenue. Similarly, Google showed a 500 msec delay reduced engagement by 20%. (source)

Keyword search is faster than vector search and often still preferred for single-word queries or exact phrase matches. However, it’s impossible to write rules and synonyms for every possible query. 

What if you were able to get the best of both keyword and vector search without the tradeoff of speed or accuracy?

AI combined with keywords

AI is very powerful, but more-so with traditional keyword search technologies. Together this hybrid combination delivers better results for any type of query. Keyword search is precise, vector search is smart. The combination of the two offers the best of both worlds.

The trick is in making it fast and performant across different datasets while determining relevance from both keyword and vector search results. At Algolia, we do that with a technology we call neural hashing. We can convert vectors into binary hashes — a smaller, more portable data type that can be run on commodity hardware without any cost overhead. Hashes retain 96% or more of the original vector accuracy. Combined with keywords, we’re able to deliver some mind-blowing results from the fat head to the long tail. See the example below in which we do a long tail search for “something to keep my beer cold”. Good luck with that on a keyword search engine! Results are fast, too, even on the largest catalogs with millions of SKUs. 

sample AI longtail search
In this sample data set of 22,000 products, hybrid search could find products that match the unusual query in single-digit milliseconds.

There are many different complementary technologies at play including NLP, typo tolerance, stemming, and query categorization. This is a big differentiator between Algolia and some other possible solutions out there. Only Algolia offers deep expertise with all of these search technologies to deliver better results at query time, faster and at scale.

For your customers, an API-First solution such as Algolia AI search means faster, more accurate search, discovery, and recommendations. Better search results mean a better user experience and a higher likelihood of on-site conversion and brand loyalty.

No effort, better results, more revenue

Long tail phrases present a challenge for on-site ecommerce optimization. It’s virtually impossible for your team to determine search intent and write rules, synonyms, and keywords for every possible query combination. Hybrid search offers retailers a smart solution even if you don’t have the exact right keywords on your site. 

Additionally, as your catalog changes, new products and new content is added, or as terms take on new meaning, the AI hybrid search engine will adjust. It doesn’t require any additional headcount or operations. The hybrid engine will automatically match keywords or concepts — sometimes a mix of both — depending on the query or search phrase. 

Better search results for head terms and long tail keywords will drive higher conversion rates and happier customer satisfaction.

See how AI search improves long tail search results, and contact our team of experts to be among the first to leverage the power of our recently released Algolia NeuralSearch technology.

 

About the author
Michelle Adams

Chief Revenue Officer at Algolia

linkedin

Recommended Articles

Powered byAlgolia Algolia Recommend

How AI search enables ecommerce companies to boost revenue and cut costs
ai

Michelle Adams

Chief Revenue Officer at Algolia

What is vector search?
ai

Dustin Coates

Product and GTM Manager

A simple guide to AI search
ai

Jon Silvers

Director, Digital Marketing