Search by Algolia
AI-powered search: From keywords to conversations
ai

AI-powered search: From keywords to conversations

By now, everyone’s had the opportunity to experiment with AI tools like ChatGPT or Midjourney and ponder their inner ...

Chris Stevenson

Director, Product Marketing

Vector vs Keyword Search: Why You Should Care
ai

Vector vs Keyword Search: Why You Should Care

Search has been around for a while, to the point that it is now considered a standard requirement in many ...

Nicolas Fiorini

Senior Machine Learning Engineer

What is AI-powered site search?
ai

What is AI-powered site search?

With the advent of artificial intelligence (AI) technologies enabling services such as Alexa, Google search, and self-driving cars, the ...

John Stewart

VP Corporate Marketing

What is a B2B marketplace?
e-commerce

What is a B2B marketplace?

It’s no secret that B2B (business-to-business) transactions have largely migrated online. According to Gartner, by 2025, 80 ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

3 strategies for B2B ecommerce growth: key takeaways from B2B Online - Chicago
e-commerce

3 strategies for B2B ecommerce growth: key takeaways from B2B Online - Chicago

Twice a year, B2B Online brings together industry leaders to discuss the trends affecting the B2B ecommerce industry. At the ...

Elena Moravec

Director of Product Marketing & Strategy

Deconstructing smart digital merchandising
e-commerce

Deconstructing smart digital merchandising

This is Part 2 of a series that dives into the transformational journey made by digital merchandising to drive positive ...

Benoit Reulier
Reshma Iyer

Benoit Reulier &

Reshma Iyer

The death of traditional shopping: How AI-powered conversational commerce changes everything
ai

The death of traditional shopping: How AI-powered conversational commerce changes everything

Get ready for the ride: online shopping is about to be completely upended by AI. Over the past few years ...

Aayush Iyer

Director, User Experience & UI Platform

What is B2C ecommerce? Models, examples, and definitions
e-commerce

What is B2C ecommerce? Models, examples, and definitions

Remember life before online shopping? When you had to actually leave the house for a brick-and-mortar store to ...

Catherine Dee

Search and Discovery writer

What are marketplace platforms and software? Why are they important?
e-commerce

What are marketplace platforms and software? Why are they important?

If you imagine pushing a virtual shopping cart down the aisles of an online store, or browsing items in an ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

What is an online marketplace?
e-commerce

What is an online marketplace?

Remember the world before the convenience of online commerce? Before the pandemic, before the proliferation of ecommerce sites, when the ...

Catherine Dee

Search and Discovery writer

10 ways AI is transforming ecommerce
e-commerce

10 ways AI is transforming ecommerce

Artificial intelligence (AI) is no longer just the stuff of scary futuristic movies; it’s recently burst into the headlines ...

Catherine Dee

Search and Discovery writer

AI as a Service (AIaaS) in the era of "buy not build"
ai

AI as a Service (AIaaS) in the era of "buy not build"

Imagine you are the CTO of a company that has just undergone a massive decade long digital transformation. You’ve ...

Sean Mullaney

CTO @Algolia

By the numbers: the ROI of keyword and AI site search for digital commerce
product

By the numbers: the ROI of keyword and AI site search for digital commerce

Did you know that the tiny search bar at the top of many ecommerce sites can offer an outsized return ...

Jon Silvers

Director, Digital Marketing

Using pre-trained AI algorithms to solve the cold start problem
ai

Using pre-trained AI algorithms to solve the cold start problem

Artificial intelligence (AI) has quickly moved from hot topic to everyday life. Now, ecommerce businesses are beginning to clearly see ...

Etienne Martin

VP of Product

Introducing Algolia NeuralSearch
product

Introducing Algolia NeuralSearch

We couldn’t be more excited to announce the availability of our breakthrough product, Algolia NeuralSearch. The world has stepped ...

Bernadette Nixon

Chief Executive Officer and Board Member at Algolia

AI is eating ecommerce
ai

AI is eating ecommerce

The ecommerce industry has experienced steady and reliable growth over the last 20 years (albeit interrupted briefly by a global ...

Sean Mullaney

CTO @Algolia

Semantic textual similarity: a game changer for search results and recommendations
product

Semantic textual similarity: a game changer for search results and recommendations

As an ecommerce professional, you know the importance of providing a five-star search experience on your site or in ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

What is hashing and how does it improve website and app search?
ai

What is hashing and how does it improve website and app search?

Hashing.   Yep, you read that right.   Not hashtags. Not golden, crisp-on-the-outside, melty-on-the-inside hash browns ...

Catherine Dee

Search and Discovery writer

Looking for something?

facebookfacebooklinkedinlinkedintwittertwittermailmail

Just as the pre-Internet man or woman in the street had “only” stores and malls to go to, the pre-recommendation engine e-commerce shopper has “only” the search box … today we have an ability to search smarter with API-driven machine intelligence designed to fill our carts and warm our hearts.

We used to go the shops, but those days have now passed. Okay, in reality, many of us do still go to shops, stores, malls, boutiques, supermarkets, and real-world outdoor markets all the time. The point is, the rise of online shopping can be traced back to pre-millennial times, and the global events associated with the pandemic have done nothing to stem the rise in clicks vs. bricks retailing.

The reality of the post Covid-19 era is that online shopping is happening everywhere, i.e. not just on laptops, tablets, smartphones, and other essentially desktop-based machines, but across a huge range of other different digital touchpoints. Every device from smart TVs to automobiles to airport kiosks can provide us with a digital shopping experience if it wants to… and it probably soon will.

The massive scope of the digital strip mall of the future presents us with an almost infinite variety of shopping conduits. This huge array of options actually makes choice more difficult, for humans at least. We can now look to machine intelligence to help us understand what we would most likely prefer to buy when, where, and why.

Recommendations required

What we (consumers) need now are better recommendations. 

Crucially though, we need those recommendations to be delivered across the variety of burgeoning digital touchpoints, so it makes sense to use an Artificial Intelligence (AI)-optimized Application Programming Interface (API) approach to allow recommendations to surface wherever we as consumers happen to be. 

Perhaps even more crucially, we need recommendations based upon our behavior and preferences surfaced within milliseconds… and we need those recommendations to be capable of drawing upon an entire range of product or service data that encompasses everything from description, availability, price, and onwards to aspects of compatibility and usability where appropriate.

According to Jordan Jewell, research manager, digital commerce at IDC: “Due to COVID-19, a record share of retail sales saw record growth in 2020, raising the stakes for practically every organization to have a digital commerce strategy. In this hyper-competitive market, merchants must provide customers with unique, personalized, and frictionless commerce experiences to succeed.”

Jewell agrees that an API-first tech stack is the foundation of these differentiated experiences. 

Cart expansion & average order value

Where the early e-commerce pioneers would have been happy with any customer who actually completed their product or service selection, filled in all required form-fields and subsequently executed payment successfully, modern e-business is far more demanding and exacting. Today’s e-commerce vendors need to be able to maximize the average order value through shopping cart expansion and customer satisfaction in their online stores. 

Significant progress towards weightier carts and orders can be achieved by using Algolia Recommend, a technology advancement that enables retailers to earn greater trust and loyalty by demonstrating a richer understanding of their customers by surfacing highly relevant recommendations in the  moment.

In a recent survey, 42% of respondents said that it was “very important” or “somewhat important” to see personalized content (such as recommendations, offers, or other customer’s previous experiences) when purchasing online. When studying the impact of product recommendations in the U.S., 38% of respondents stated they would shop “much more frequently” or “more frequently” at online retailers if they received such recommendations.

In an example of one use-case, European telecoms provider Orange România used Algolia Recommend technology to retain and convert shoppers when landing on out-of-stock products, an action that very typically might see shoppers abandon a page, entire website or even brand.

An API-first approach

Of course, it’s easier to talk about using a recommendation engine than it is to develop one from scratch, stress test it, debug it, integrate it and keep it maintained, managed and highly performant. This is why Algolia Recommend is delivered via an API-first approach that is simple to integrate and easy to use. 

The existing systems and software stack in any organization can be elevated to the advantages on offer here – and the functionality far outstrips off-the-shelf packaged solutions, which make it almost impossible to develop a differentiated customer experience or gain a competitive advantage. 

Algolia Recommend initially includes two of the more popular Machine Learning models that automatically deliver tailored recommendations. The “Related Products” recommendation model enables retailers to increase conversions and orders by analyzing items a shopper interacts with (e.g. clicks, adds to a cart, and/or purchases) and suggesting similar products during the same session.

The “Frequently Bought Together” recommendation model increases average order value by upselling complementary items on the product page or shopping cart page based on how other shoppers have interacted with that same item during a single shopping session.

Beyond the search box

As co-founder and chief technology officer of Algolia Julien Lemoine has said, this is all about helping customers to “go beyond the search box” and start experiencing an optimized online shopping experience that really drives increased revenue.  

“Algolia recently unveiled its new company direction and vision and helped customers go beyond the search box with their digital commerce strategies,” said Lemoine. “The release of Algolia Recommend provides the next building block for retailers to optimize their online experience and increase their revenue. These retailers have already unlocked $1 billion+ additional annual revenue on the back of up to 1.7 trillion searches across Algolia’s API platform.”

Just as the pre-Internet man or woman in the street might have “only” had the stores and the mall to go to, the pre-recommendation engine e-commerce shopper “only” had the search box to rely upon… today we have an ability to search smarter with API-driven machine intelligence designed to fill our carts and warm our hearts. 

 

About the author
Adrian Bridgwater

Enterprise Software Industry Journalist

Recommended Articles

Powered byAlgolia Algolia Recommend

Introducing Algolia Recommend: The next best way for developers to increase revenue
product

Matthieu Blandineau

Sr. Product Marketing Manager

What is a product recommender (or product recommendation engine)?
product

Catherine Dee

Search and Discovery writer

How any business can benefit from personalization and recommendations
product

Marie-Laure Thuret

Technical Product Manager