Search by Algolia
What is B2B ecommerce? Everything you need to know
e-commerce

What is B2B ecommerce? Everything you need to know

When you think of “customer experience,” what comes to mind? People, right? Specifically, consumers. Retail customers. That’s easy; the ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

What is ecommerce merchandising? Key components and best practices
e-commerce

What is ecommerce merchandising? Key components and best practices

A potential customer is about to land on the home page of your ecommerce platform, curious to see what cool ...

Catherine Dee

Search and Discovery writer

AI-powered search: From keywords to conversations
ai

AI-powered search: From keywords to conversations

By now, everyone’s had the opportunity to experiment with AI tools like ChatGPT or Midjourney and ponder their inner ...

Chris Stevenson

Director, Product Marketing

Vector vs Keyword Search: Why You Should Care
ai

Vector vs Keyword Search: Why You Should Care

Search has been around for a while, to the point that it is now considered a standard requirement in many ...

Nicolas Fiorini

Senior Machine Learning Engineer

What is AI-powered site search?
ai

What is AI-powered site search?

With the advent of artificial intelligence (AI) technologies enabling services such as Alexa, Google search, and self-driving cars, the ...

John Stewart

VP Corporate Marketing

What is a B2B marketplace?
e-commerce

What is a B2B marketplace?

It’s no secret that B2B (business-to-business) transactions have largely migrated online. According to Gartner, by 2025, 80 ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

3 strategies for B2B ecommerce growth: key takeaways from B2B Online - Chicago
e-commerce

3 strategies for B2B ecommerce growth: key takeaways from B2B Online - Chicago

Twice a year, B2B Online brings together industry leaders to discuss the trends affecting the B2B ecommerce industry. At the ...

Elena Moravec

Director of Product Marketing & Strategy

Deconstructing smart digital merchandising
e-commerce

Deconstructing smart digital merchandising

This is Part 2 of a series that dives into the transformational journey made by digital merchandising to drive positive ...

Benoit Reulier
Reshma Iyer

Benoit Reulier &

Reshma Iyer

The death of traditional shopping: How AI-powered conversational commerce changes everything
ai

The death of traditional shopping: How AI-powered conversational commerce changes everything

Get ready for the ride: online shopping is about to be completely upended by AI. Over the past few years ...

Aayush Iyer

Director, User Experience & UI Platform

What is B2C ecommerce? Models, examples, and definitions
e-commerce

What is B2C ecommerce? Models, examples, and definitions

Remember life before online shopping? When you had to actually leave the house for a brick-and-mortar store to ...

Catherine Dee

Search and Discovery writer

What are marketplace platforms and software? Why are they important?
e-commerce

What are marketplace platforms and software? Why are they important?

If you imagine pushing a virtual shopping cart down the aisles of an online store, or browsing items in an ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

What is an online marketplace?
e-commerce

What is an online marketplace?

Remember the world before the convenience of online commerce? Before the pandemic, before the proliferation of ecommerce sites, when the ...

Catherine Dee

Search and Discovery writer

10 ways AI is transforming ecommerce
e-commerce

10 ways AI is transforming ecommerce

Artificial intelligence (AI) is no longer just the stuff of scary futuristic movies; it’s recently burst into the headlines ...

Catherine Dee

Search and Discovery writer

AI as a Service (AIaaS) in the era of "buy not build"
ai

AI as a Service (AIaaS) in the era of "buy not build"

Imagine you are the CTO of a company that has just undergone a massive decade long digital transformation. You’ve ...

Sean Mullaney

CTO @Algolia

By the numbers: the ROI of keyword and AI site search for digital commerce
product

By the numbers: the ROI of keyword and AI site search for digital commerce

Did you know that the tiny search bar at the top of many ecommerce sites can offer an outsized return ...

Jon Silvers

Director, Digital Marketing

Using pre-trained AI algorithms to solve the cold start problem
ai

Using pre-trained AI algorithms to solve the cold start problem

Artificial intelligence (AI) has quickly moved from hot topic to everyday life. Now, ecommerce businesses are beginning to clearly see ...

Etienne Martin

VP of Product

Introducing Algolia NeuralSearch
product

Introducing Algolia NeuralSearch

We couldn’t be more excited to announce the availability of our breakthrough product, Algolia NeuralSearch. The world has stepped ...

Bernadette Nixon

Chief Executive Officer and Board Member at Algolia

AI is eating ecommerce
ai

AI is eating ecommerce

The ecommerce industry has experienced steady and reliable growth over the last 20 years (albeit interrupted briefly by a global ...

Sean Mullaney

CTO @Algolia

Looking for something?

facebookfacebooklinkedinlinkedintwittertwittermailmail

Last year was a big year for us here at Algolia. We hired scores of incredible people and released some incredible new features. One of the earliest was query suggestions, released in February. It harnesses our analytics API to create dynamic suggestions ranked by popularity. Its ease of implementation allows our users to, in a matter of hours, create a UX that consumers, “spoiled” by Google, have come to expect. To read more about how the feature works in detail, check out this blog post.

TL;DR: our query suggestions engine creates an index of the most popular search terms that lead to results (vs those with zero results) and refreshes that every 24 hours. This index can be used to create the autocomplete dropdown that Google has led many of us to know and love.

Unlike Google’s, however, this list is not yet tailored to an individual user.

What about a personalized experience?

One trend last year was increasingly personalized content— advertising follows us across devices and curated content is recommended to us based on our past browsing history. Google, for example, saves our searches (among other things) so that two people sitting next to each other, searching for the exact same thing, might get a different set of suggestions.

Algolia customers can recreate this experience by combining our current query suggestions feature and just a bit of additional leg work: By saving searches on a per-user or per-segment basis, to create a highly personalized search experience.

Personalized saved searches allow your users to quickly search for something they look for frequently, while the crowd-sourced suggestions allow them to more easily discover a term they may have been looking to search. Because the suggestions coming from our query suggestions feature are being generated by a wider audience, they will change more frequently and will represent what is trending. For this reason, we recommend sticking to a ratio similar to what is shown above: 1 to 5 for saved to suggested searches.

An added bonus—by building saved searches in Algolia rather than relying on some sort of caching like localStorage, these saved searches are available cross-device This allows a user searching on their phone to access searches they made on their laptop.

Building it

The query suggestions feature can be used as a template for how to do this. Query suggestions draw from our analytics API to create a new index; you will have to create a new index with recent searches in it. Algolia pulls results on a per character basis, but it would be best to only send “completed” searches to Algolia for indexing by debouncing — waiting a set amount of time without any new character input.

Each completed search should be tagged with a timestamp, count, and usertoken for the user who made it. The count attribute is incremented every time the user types the particular search term and can be used as a custom ranking attribute to boost the most popular searches to the top. The timestamp will allow you to both purge old searches (say those older than 30 days) and to rank searches by recency. The usertoken will allow you to only pull up relevant saved searches on a per-user basis.

It is better to create a large index with all of your users’ saved searches rather than creating one index per user, as indexing updates to multiple small indices is much slower than indexing the same number of updates to one large index. Additionally, we recommend using our secured API keys feature when pulling results from the API for enhanced history containerization and security.

On the front end

One caveat is that, since the dropdown is being built from two separate indices, it’s possible that something could come up as *both* a saved search, and a suggestion. This experience looks glitchy and takes up valuable real estate on dropdowns that should stay short. For that reason, it helps to always display the 1-2 saved searches, but then build additional logic to not display any suggestion that is also found in the saved searches.

A nice UI touch is to differentiate the saved searches from the suggestions. Google has done this by bolding and adding a “Remove” option.

Adding an icon to denote that this suggestion is being sourced from the search history is another nice option.

Announcing automated personalization

Saving a user’s search behavior and using it to influence the output of future search results is the basic concept behind our biggest feature release of last year.

On December 18th, we released an automated personalization feature that allows our users to return individualized search results for their end-users based on their past actions.

What events in that history to consider — whether it be product page views, hitting the “like” button, or reading an article to its completion, how much each event is weighted, and how “similar” items are scored — is up to you and configurable on the Algolia dashboard. The only additional development work is to send these events to our Insights API whenever they occur, and to toggle on the “personalized” option when returning the results.

We’ll take care of the rest.

Check out the blog post and the product page on personalization to learn more.

Availability

Query Suggestions is available today for our Business and Enterprise customers and Automated Personalization is available for Enterprise customers only. To enable these features directly on your dashboard, reach out to your product specialist or customer success manager.

Have feedback? Tweet to us @algolia, or comment below. Thanks for reading!

About the author
Maria Schreiber

Solutions Engineer, New York

githublinkedin

Think outside the (search) box

Innovative user experiences for improving e-commerce conversion rates.

Discover more
Ebook
Ebook

Recommended Articles

Powered byAlgolia Algolia Recommend

Introducing Query Suggestions: Making Autocomplete Search Experiences Right
product

Lucas Cerdan

Product Manager

Suggested search and autocomplete: What is it and how does it work?
ux

Catherine Dee

Search and Discovery writer

The (almost) ultimate guide to site search
product

Ivana Ivanovic

Senior Content Strategist