Search by Algolia
How personalization boosts customer engagement
e-commerce

How personalization boosts customer engagement

You land on your favorite retailer’s website, where everything seems to be attractively arranged just for you. Your favorite ...

Jon Silvers

Director, Digital Marketing

What is retail analytics and how can it inform your data-driven ecommerce merchandising strategy?
e-commerce

What is retail analytics and how can it inform your data-driven ecommerce merchandising strategy?

There is such tremendous activity both on and off of retailer websites today that it would be impossible to make ...

Catherine Dee

Search and Discovery writer

8 ways to use merchandising data to boost your online store ROI
e-commerce

8 ways to use merchandising data to boost your online store ROI

New year, new goals. Sounds positive, but looking at your sales data, your revenue and profit aren’t so hot ...

John Stewart

VP, Corporate Communications and Brand

Algolia DocSearch + Astro Starlight
engineering

Algolia DocSearch + Astro Starlight

What is Astro Starlight? If you're building a documentation site, your content needs to be easy to write and ...

Jaden Baptista

Technical Writer

What role does AI play in recommendation systems and engines?
ai

What role does AI play in recommendation systems and engines?

You put that in your cart. How about this cool thing to go with it? You liked that? Here are ...

Catherine Dee

Search and Discovery writer

How AI can help improve your user experience
ux

How AI can help improve your user experience

They say you get one chance to make a great first impression. With visual design on ecommerce web pages, this ...

Jon Silvers

Director, Digital Marketing

Keeping your Algolia search index up to date
product

Keeping your Algolia search index up to date

When creating your initial Algolia index, you may seed the index with an initial set of data. This is convenient ...

Jaden Baptista

Technical Writer

Merchandising in the AI era
e-commerce

Merchandising in the AI era

For merchandisers, every website visit is an opportunity to promote products to potential buyers. In the era of AI, incorporating ...

Tariq Khan

Director of Content Marketing

Debunking the most common AI myths
ai

Debunking the most common AI myths

ARTIFICIAL INTELLIGENCE CAN’T BE TRUSTED, shouts the headline on your social media newsfeed. Is that really true, or is ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

How AI can benefit the retail industry
ai

How AI can benefit the retail industry

Artificial intelligence is on a roll. It’s strengthening healthcare diagnostics, taking on office grunt work, helping banks combat fraud ...

Catherine Dee

Search and Discovery writer

How ecommerce AI is reshaping business
e-commerce

How ecommerce AI is reshaping business

Like other modern phenomena such as social media, artificial intelligence has landed on the ecommerce industry scene with a giant ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

AI-driven smart merchandising: what it is and why your ecommerce store needs it
ai

AI-driven smart merchandising: what it is and why your ecommerce store needs it

Do you dream of having your own personal online shopper? Someone familiar and fun who pops up every time you ...

Catherine Dee

Search and Discovery writer

NRF 2024: A cocktail of inspiration and innovation
e-commerce

NRF 2024: A cocktail of inspiration and innovation

Retail’s big show, NRF 2024, once again brought together a wide spectrum of practitioners focused on innovation and transformation ...

Reshma Iyer

Director of Product Marketing, Ecommerce

How AI-powered personalization is transforming the user and customer experience
ai

How AI-powered personalization is transforming the user and customer experience

In a world of so many overwhelming choices for consumers, how can you best engage with the shoppers who visit ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

Unveiling the future: Algolia’s AI revolution at NRF Retail Big Show
algolia

Unveiling the future: Algolia’s AI revolution at NRF Retail Big Show

Get ready for an exhilarating journey into the future of retail as Algolia takes center stage at the NRF Retail ...

John Stewart

VP Corporate Marketing

How to master personalization with AI
ai

How to master personalization with AI

Picture ecommerce in its early days: businesses were just beginning to discover the power of personalized marketing. They’d divide ...

Ciprian Borodescu

AI Product Manager | On a mission to help people succeed through the use of AI

5 best practices for nailing the ecommerce virtual assistant user experience
ai

5 best practices for nailing the ecommerce virtual assistant user experience

“Hello there, how can I help you today?”, asks the virtual shopping assistant in the lower right-hand corner ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

Add InstantSearch and Autocomplete to your search experience in just 5 minutes
product

Add InstantSearch and Autocomplete to your search experience in just 5 minutes

A good starting point for building a comprehensive search experience is a straightforward app template. When crafting your application’s ...

Imogen Lovera

Senior Product Manager

Looking for something?

facebookfacebooklinkedinlinkedintwittertwittermailmail

Let’s say you’ve been tasked to build an application to help consumers find agencies providing a specific service. Some of these agencies are local brick-and-mortar storefronts and others are online-only agencies that service the same local area.

This problem was initially posed by Alejo Arias in the Algolia forum:

I have a series of providers in my index:

  • some are national providers (they have a national: true attribute)
  • some are state-wide providers (they have a state attribute with the list of states they service, e.g. [“NY”, “FL”])
  • some are local (they have specific lat/lng in their _geoloc attribute)

I want in my results anything that matches local providers by location close to my users, but also provide (in the same results) state and national providers.

Adding a aroundLatLng filter automatically removes other results, no matter what facets or filters I try.

How can I achieve this?
Basically I want to have something like: aroundLatLng: x,y OR state: NY OR national: true

So how do you combine results from a geographic search for brick-and-mortar stores and with other results from boolean or text-based queries? And how do you build an interface to display them in a unified way?

Geographic data and Algolia Search

As Alejo mentions, you can use Algolia for geographic searches by adding a special _geoloc attribute on your records. You put one or more sets of latitude/longitude tuples into this attribute to indicate geographic locations linked to the record.

Then you use the Algolia client libraries to query against these geocoded records — filtering either within a radius around a fixed point (aroundLatLong) or the area within a shape (insideBoundingBox or insidePolygon). The documentation goes into more detail about the differences between these methods. You can also read through these posts that walk you through building a pure-geographic store locator.

However, you cannot extract geographic and non-geographic results from the same query. If you are searching for proximity, records lacking _geoloc attributes will not show up in the result set.

So how do you perform this search when not all records have geographic coordinates?

A single index solution

You could do the whole thing via geographic search. By adding _geoloc data to the state and national records, you could search for everything using a geographic query. For instance, placing the statewide agencies at coordinates at the center of each state. This was the initial solution I added to the forum post, but there are several problems with this solution:

  1. Alejo specifically mentions that some providers span multiple states
  2. Placing providers at the center of the state will cause inaccurate results for consumers who live near state borders
  3. National providers would need records in every state

A multi-index solution

As an alternative you can build a multi-index solution with one index for the brick-and-mortar storefronts that include geographic data, and another for the state and national providers. You can then search the two data sources independently and blend the result sets. This approach requires two Algolia queries per search, but it will allow us to guarantee results from both types of providers.

Preparing your indices

First, you’ll need an agency data set. You can build one from scratch using a couple of sources. You can start with anonymized address data from this repo containing about 3000 addresses across the United State. Then, run these addresses through a small script to add fictional agency names and randomly flag some of the agencies as “preferred”.

def transform_records(addresses):
  address_records = []
  for address in addresses:
    record = {}
    record_geocode = {}
    # One in ten chance agency is preferred 
    record['preferred'] = 10 == random.randint(1,10)

    record['objectID'] = random_name.generate_name().title()
    if record['preferred']:
      record['name'] = f"{record['objectID']} Agency (Preferred)"
    else:
      record['name'] = f"{record['objectID']} Agency"
    record['address'] = address.get('address1')
    record['city'] = address.get('city')
    record['state'] = address.get('state')
    record['zip'] = address.get('postalCode')
    record_geocode['lat'] = address['coordinates']['lat']
    record_geocode['lng'] = address['coordinates']['lng']
    record['_geoloc'] = record_geocode
    address_records.append(record)
  return address_records

You can use another script to generate statewide and multi-state agencies for the second index. Both data sets reside in this repo. You can create indices from these data sets under your existing Algolia account or sign up for a free account and set up a new agency_finder application.

Building the front end

Now that you’ve populated your indices, it’s time to build the front end. Algolia’s geoSearch component in the InstantSearch library includes a helper component to initialize the Google Maps API, render a Map, and tie that map to geolocation queries in your Algolia index. It’s the same component I used previously to build a COVID-19 case visualizer. However, for this project, you want the user to type in an address and resolve the geolocation information for them using the Google Places API. This proves challenging using the out-of-the-box components in InstantSearch, so you’ll build your own interface from scratch.

This blog post gives us a solid model for building an address autocomplete form in React. You’ll use this as the foundation for your AgencyFinderForm component to render the address autocomplete input field as well as read-only fields to display the resulting address. The latitude/longitude are stored in state, but not shown on the form

You can modernize the code from the blog by using the Google Wrapper around your React components to initialize the google object and add the Places API.

   renderForm = (status) => {
    switch (status) {
      case Status.SUCCESS:
        return ;
      default:
        return <h3>{status} ...</h3>;
      };
  }

  render() {
    return (
      <div>
        <h1>Find an Agency</h1>
        <p className='instructions'>🔍 Search for your address to find the closest agencies.</p>
        <div className='left-panel'>
          <Wrapper apiKey={process.env.REACT_APP_GOOGLE_API_KEY} render={this.renderForm} libraries={["places"]} />
        </div>
        <div className='right-panel'>
          <AgencyFinderResults hits={this.state.results} />
        </div>
      </div>
    )
  }
}

Next you add a clear button to the basic form.

  handleClear() {
    this.setState(this.initialState);
    var input = document.getElementById('autocomplete');
    input.value = '';
    google.maps.event.removeListener(this.autocompleteListener);
    this.initAutocomplete();
  }

Finally, you’ll clean up processing the address_components from the Places API with following code:

  handlePlaceSelect() {
    const addressObject = this.autocomplete.getPlace();
    const address = addressObject.address_components.reduce((seed, { short_name, types }) => {
      types.forEach(t => {
        seed[t] = short_name;
      });
      return seed;
    }, {});
    [this setState](this.setState)({
      streetAddress: `${address.street_number} ${address.route}`,
      city: address.locality ? address.locality : address.sublocality_level_1,
      state: address.administrative_area_level_1,
      zipCode: address.postal_code,
      geoCode: addressObject.geometry.location.lat() + ', ' + addressObject.geometry.location.lng(),
    });
  }

Querying for results

After the user has selected a location and you have the latitude, longitude, and address information stored in the component state, you’re ready to query the indices. You use the multipleQueries method from the Javascript API client to batch together the two queries and combine the results. This will still count as two queries against your Algolia limit, but it reduces the number of round trips to the API.

handleSubmit(event) {
    const queries = [{
      indexName: statesIndex,
      query: this.state.state,
      params: {
        hitsPerPage: 10
      }
    }, {
      indexName: geoIndex,
      query: '',
      params: {
        aroundLatLng: this.state.geoCode,
        facetFilters: [ this.state.preferred ? 'preferred:true' : '' ],
        hitsPerPage: 10,
      }
    }];
    
    this.searchClient.multipleQueries(queries).then(({ results }) => {
      let allHits = [];
      results.map((result) => {
        return allHits.push(...result.hits);
      });
      this.props.handleCallback(allHits);
    });
  }

First, you initialize the two queries. Notice how the multipleQueries method allows us to mix geographic and string-based queries, and even layer in an
optional facetFilter for your “Preferred” agencies. You then pass the array of queries to the client. The response includes the individual results from each
query, but you can just smash the hits from the two result sets into a single array and pass them to the AgencyFinderResults component.

Putting it all together

You now have a solid proof-of-concept React component for layering geographic and non-geographic results into a single result set. At this point you could improve the example by adding a Google Map to display the geographic results. You could also pivot back to a single index, using multipleQueries ability to query the same index multiple times with different parameters.

The complete example is available in this Github repo or you can try out a live demo.

About the author
Chuck Meyer

Sr. Developer Relations Engineer

githubtwitter

Recommended Articles

Powered byAlgolia Algolia Recommend

Building a Store Locator in React using Algolia, Mapbox, and Twilio – Part 3
engineering

Clément Sauvage

Software Engineer, Freelance

Building a Store Locator in React using Algolia, Mapbox, and Twilio – Part 2
engineering

Clément Sauvage

Software Engineer, Freelance

Replicating the Algolia documentation search with Autocomplete
ux

Sarah Dayan
François Chalifour

Sarah Dayan &

François Chalifour