Search by Algolia
What is a B2B marketplace?
e-commerce

What is a B2B marketplace?

It’s no secret that B2B (business-to-business) transactions have largely migrated online. According to Gartner, by 2025, 80 ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

3 strategies for B2B ecommerce growth: key takeaways from B2B Online - Chicago
e-commerce

3 strategies for B2B ecommerce growth: key takeaways from B2B Online - Chicago

Twice a year, B2B Online brings together industry leaders to discuss the trends affecting the B2B ecommerce industry. At the ...

Elena Moravec

Director of Product Marketing & Strategy

Deconstructing smart digital merchandising
e-commerce

Deconstructing smart digital merchandising

This is Part 2 of a series that dives into the transformational journey made by digital merchandising to drive positive ...

Benoit Reulier
Reshma Iyer

Benoit Reulier &

Reshma Iyer

The death of traditional shopping: How AI-powered conversational commerce changes everything
ai

The death of traditional shopping: How AI-powered conversational commerce changes everything

Get ready for the ride: online shopping is about to be completely upended by AI. Over the past few years ...

Aayush Iyer

Director, User Experience & UI Platform

What is B2C ecommerce? Models, examples, and definitions
e-commerce

What is B2C ecommerce? Models, examples, and definitions

Remember life before online shopping? When you had to actually leave the house for a brick-and-mortar store to ...

Catherine Dee

Search and Discovery writer

What are marketplace platforms and software? Why are they important?
e-commerce

What are marketplace platforms and software? Why are they important?

If you imagine pushing a virtual shopping cart down the aisles of an online store, or browsing items in an ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

What is an online marketplace?
e-commerce

What is an online marketplace?

Remember the world before the convenience of online commerce? Before the pandemic, before the proliferation of ecommerce sites, when the ...

Catherine Dee

Search and Discovery writer

10 ways AI is transforming ecommerce
e-commerce

10 ways AI is transforming ecommerce

Artificial intelligence (AI) is no longer just the stuff of scary futuristic movies; it’s recently burst into the headlines ...

Catherine Dee

Search and Discovery writer

AI as a Service (AIaaS) in the era of "buy not build"
ai

AI as a Service (AIaaS) in the era of "buy not build"

Imagine you are the CTO of a company that has just undergone a massive decade long digital transformation. You’ve ...

Sean Mullaney

CTO @Algolia

By the numbers: the ROI of keyword and AI site search for digital commerce
product

By the numbers: the ROI of keyword and AI site search for digital commerce

Did you know that the tiny search bar at the top of many ecommerce sites can offer an outsized return ...

Jon Silvers

Director, Digital Marketing

Using pre-trained AI algorithms to solve the cold start problem
ai

Using pre-trained AI algorithms to solve the cold start problem

Artificial intelligence (AI) has quickly moved from hot topic to everyday life. Now, ecommerce businesses are beginning to clearly see ...

Etienne Martin

VP of Product

Introducing Algolia NeuralSearch
product

Introducing Algolia NeuralSearch

We couldn’t be more excited to announce the availability of our breakthrough product, Algolia NeuralSearch. The world has stepped ...

Bernadette Nixon

Chief Executive Officer and Board Member at Algolia

AI is eating ecommerce
ai

AI is eating ecommerce

The ecommerce industry has experienced steady and reliable growth over the last 20 years (albeit interrupted briefly by a global ...

Sean Mullaney

CTO @Algolia

Semantic textual similarity: a game changer for search results and recommendations
product

Semantic textual similarity: a game changer for search results and recommendations

As an ecommerce professional, you know the importance of providing a five-star search experience on your site or in ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

What is hashing and how does it improve website and app search?
ai

What is hashing and how does it improve website and app search?

Hashing.   Yep, you read that right.   Not hashtags. Not golden, crisp-on-the-outside, melty-on-the-inside hash browns ...

Catherine Dee

Search and Discovery writer

Conference Recap: ECIR23 Take-aways
engineering

Conference Recap: ECIR23 Take-aways

We’re just back from ECIR23, the leading European conference around Information Retrieval systems, which ran its 45th edition in ...

Paul-Louis Nech

Senior ML Engineer

What is a neural network and how many types are there?
ai

What is a neural network and how many types are there?

Your grandfather wears those comfy slipper-y shoes all day, every day, and they’re starting to get holes in ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

10 reasons AI search is the next big thing
ai

10 reasons AI search is the next big thing

Every time I look at the news, there is another article about the race to build new search and discovery ...

Michelle Adams

Chief Revenue Officer at Algolia

Looking for something?

facebookfacebooklinkedinlinkedintwittertwittermailmail

You say “sweats”, someone else say “joggers”.

He says “fifth wheel”, she says “camper”, your neighbor says “RV”.

Some people call movie stars “wealthy”; others describe them as “rich”.

The English language has evolved in interesting ways along with different groups of people’s lexicons so that we now have a wealth (richness?) of similar words and phrases — synonyms — to use as communication options. Plus, some of our words (for example, “mouse”) mean two entirely different things altogether.

The ambiguity caused by this phenomenon can be a problem, such as when computer science gets involved. Through people’s use of natural language and unique words, massive amounts of information and collections of documents are created and shared every day: research studies, emails, school work, web pages, social media posts, blog posts, call transcripts, news stories, search queries. And in addition to creation of new documents, there’s plenty of editing of old ones.

Thanks to natural language processing (NLP), the language nuances various people are using and expecting to hear can be turned into information that software can more easily figure out and use or apply “intelligently.” 

Website and app search, in particular, benefit from top-notch NLP technology. After all, if someone is searching for “tights” on an ecommerce website where they’re only referred to as “leggings”, and the search engine hasn’t been apprised that these terms are used interchangeably, or differently by different geographically based groups, the shopper using the wrong search term is likely to be out of luck.

What is latent semantic indexing?

Fortunately, we have latent semantic indexing (LSI; also called latent semantic analysis or LSA for short), developed for creating vectors and performing information retrieval. This technical method of doing NLP utilizes a mathematical technique called singular value decomposition (SVD), which looks for relationships between concepts and words in unstructured data. 

LSA analyzes relationships between documents and the terms they contain by reducing the number of dimensions. It’s good at understanding document relatedness by analyzing which terms are often used together — for example, “royalty” and “queen” — as a prelude to building a model of semantic relatedness. 

LSI isn’t a new thing. Way before the Internet came on the scene — in the early days, the 1980s — this statistical model was developed to facilitate text matching. It’s a patented technology (Bell Communications Research). One of its major uses then was helping search engines understand relationships between concepts and words in order to provide people with the most relevant search results for their search queries. And although the patent expired in 2008, it’s still going strong in the world of data science.

For enhancing search, it’s still being tapped for upgrading the search functionality on sites and apps. How the technology works is a bit complex, but suffice it to say that it’s related to creating vectors and performing information retrieval despite people entering “alternative” words to those housed in the site’s or app’s index. The benefit is its ability to help people find whatever piece of content they want faster, leading to both happier searchers and better metrics and revenues for organizations and businesses.

What are LSI keywords?

You may have heard the term “LSI keywords” used in relation to Google search and search engine optimization (SEO) strategy. If so, you’re in good company, but we must temporarily digress.

According to Google senior search analyst John Mueller, “LSI keywords” aren’t a viable thing (nor are things like “LSI keyword suggestions”, the act of “finding LSI keywords”, or plans to “use LSI keyword generators” or set up a Google keyword planner), at least in the context of Google-related keywords and SEO tools.

Search Engine Journal’s Roger Montti notes that the myth of Google using LSI keywords may stem from use of such phrases as “‘Semantic Analysis,’ ‘Semantic Indexing’ and ‘Semantic Search’ having become SEO buzzwords, given life by Ask Jeeves’ semantic search technology and Google’s purchase of semantic analysis company Applied Semantics.” SEO guru Bill Slawski goes into depth in a blog post.

Good to know. But this Google situation aside, LSI is still a relevant concept in the world of search. Broadly speaking, LSI keywords are search terms related to the main keyword you are targeting. They help to support your content and add more context to make it easier for both search engines and users to understand what your content is about.

Therefore, they are critical considerations, and are still something to think seriously about if you want an effective website or content marketing that works. Semantic search is a viable undertaking that has ramifications in terms of adding search functionality to a company’s site or app.

Synonyms: the same idea with different versions

To return accurate search results, search engine retrieval methods must be able to effectively “understand” and deal with synonyms, those pesky words and phrases that, through no fault of their own, have the same meaning as other words and phrases.

Synonyms certainly aren’t a rarity. Even in just a single industry, like retail, they abound because of the diverse ways in which different groups of people, such as those with different dialects, thinking about items in different contexts — or natives of different countries — refer to the same item or idea.

It happens more than you might think. A searcher on a clothing seller’s ecommerce store site might naturally think to enter a search query for a:

  • shirt, blouse, or top
  • handbag, bag, or purse
  • pants or slacks
  • jacket, parka, or coat
  • hat or cap

Some of these terms are victims of overuse; others are considered odd by conventional standards because only certain age groups use them, for instance. Regardless of the wide synonymy abyss, a search engine must intimately know them all.

Polysemy: different things with the same name

Table, mouse, sharp…these are all polysems — words with more than one meaning. And as is the case with synonyms, with polysemy, getting a search engine to confidently understand which version you’re referring to is key. 

How latent semantic indexing refines search

In terms of digital marketing, if a shopper can’t pull up a great results page for what they need, that’s a pressing problem. If you can’t suggest relevant related searches when a shopper gets no helpful results for their main keyword, that’s a big red flag. For online business success, every synonym must be accounted for; every related term known, every possible semantically related word or phrase duly anticipated.

Does this linguistically challenging situation stump the average modern search engine?

Not with LSI in the semantic search picture. By statistically analyzing words that appear in a text document, it can anticipate which of the synonymous word different meanings is being queried and respond with the most accurate search engine results page (SERP). And when it comes to polysemy, it can tell which version of the word the searcher wants.

The secret: vectors

At Algolia, this type of semantic search technology falls in the realm of vector search. Using machine learning models that detect semantic relationships between objects in an index, it finds related objects that have similar characteristics. (Here’s some background on how cosine similarity determines closeness in word meaning). Vector embeddings (also known as “word embeddings” or just “vectors”) are applied, along with spelling correction, language processing, and category matching.  

Artificial intelligence (AI) models powered by vector engines can instantly retrieve accurate information. They can figure out that words and phrases like “gardening” and “yard work” are related words. They know that someone searching for “Puma” is looking for athletic shoes as their relevant content, not a large wildcat. “They can quickly break through the limits of exact keyword matching and immediately deliver optimal, relevant results.

Our search solution combines this AI-based vector-space functionality with traditional keyword search to offer true hybrid search, covering all the bases. By applying full-text keyword search and vector search to each query, searchers get super accurate results, and fast.

If you’ve been wanting to ensure that your users or shoppers get the absolute right search results, feel understood in their information quests, and have an excellent user experience regardless of the specific keywords they initially enter in the search bar, you’re in the right place.

  • We can help you add natural language text search to your site search functionality, create image-search capabilities, build a powerful recommendation system
  • We can meet the needs of any size dataset without additional overhead 
  • Our tie-breaking algorithm weighs and compares matching items, ensuring that the best matches appear first

There’s an added bonus, too: upgrading your search functionality could lead to surprising improvements in your conversions; just ask our clients, who know this firsthand.

Sign up for a free demo or let us know when you’re ready to learn more.

About the author
Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Recommended Articles

Powered byAlgolia Algolia Recommend

The past, present, and future of semantic search
ai

Julien Lemoine

Co-founder & former CTO at Algolia

Semantic Search: How It Works & Who It’s For
product

Dustin Coates

Product and GTM Manager

What are semantic keywords?
ux

Catherine Dee

Search and Discovery writer