Search by Algolia
Feature Spotlight: Query Rules
product

Feature Spotlight: Query Rules

You’re running an ecommerce site for an electronics retailer, and you’re seeing in your analytics that users keep ...

Jaden Baptista

Technical Writer

An introduction to transformer models in neural networks and machine learning
ai

An introduction to transformer models in neural networks and machine learning

What do OpenAI and DeepMind have in common? Give up? These innovative organizations both utilize technology known as transformer models ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

What’s the secret of online merchandise management? Giving store merchandisers the right tools
e-commerce

What’s the secret of online merchandise management? Giving store merchandisers the right tools

As a successful in-store boutique manager in 1994, you might have had your merchandisers adorn your street-facing storefront ...

Catherine Dee

Search and Discovery writer

New features and capabilities in Algolia InstantSearch
engineering

New features and capabilities in Algolia InstantSearch

At Algolia, our business is more than search and discovery, it’s the continuous improvement of site search. If you ...

Haroen Viaene

JavaScript Library Developer

Feature Spotlight: Analytics
product

Feature Spotlight: Analytics

Analytics brings math and data into the otherwise very subjective world of ecommerce. It helps companies quantify how well their ...

Jaden Baptista

Technical Writer

What is clustering?
ai

What is clustering?

Amid all the momentous developments in the generative AI data space, are you a data scientist struggling to make sense ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

What is a vector database?
product

What is a vector database?

Fashion ideas for guest aunt informal summer wedding Funny movie to get my bored high-schoolers off their addictive gaming ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Unlock the power of image-based recommendation with Algolia’s LookingSimilar
engineering

Unlock the power of image-based recommendation with Algolia’s LookingSimilar

Imagine you're visiting an online art gallery and a specific painting catches your eye. You'd like to find ...

Raed Chammam

Senior Software Engineer

Empowering Change: Algolia's Global Giving Days Impact Report
algolia

Empowering Change: Algolia's Global Giving Days Impact Report

At Algolia, our commitment to making a positive impact extends far beyond the digital landscape. We believe in the power ...

Amy Ciba

Senior Manager, People Success

Retail personalization: Give your ecommerce customers the tailored shopping experiences they expect and deserve
e-commerce

Retail personalization: Give your ecommerce customers the tailored shopping experiences they expect and deserve

In today’s post-pandemic-yet-still-super-competitive retail landscape, gaining, keeping, and converting ecommerce customers is no easy ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Algolia x eTail | A busy few days in Boston
algolia

Algolia x eTail | A busy few days in Boston

There are few atmospheres as unique as that of a conference exhibit hall: the air always filled with an indescribable ...

Marissa Wharton

Marketing Content Manager

What are vectors and how do they apply to machine learning?
ai

What are vectors and how do they apply to machine learning?

To consider the question of what vectors are, it helps to be a mathematician, or at least someone who’s ...

Catherine Dee

Search and Discovery writer

Why imports are important in JS
engineering

Why imports are important in JS

My first foray into programming was writing Python on a Raspberry Pi to flicker some LED lights — it wasn’t ...

Jaden Baptista

Technical Writer

What is ecommerce? The complete guide
e-commerce

What is ecommerce? The complete guide

How well do you know the world of modern ecommerce?  With retail ecommerce sales having exceeded $5.7 trillion worldwide ...

Vincent Caruana

Sr. SEO Web Digital Marketing Manager

Data is king: The role of data capture and integrity in embracing AI
ai

Data is king: The role of data capture and integrity in embracing AI

In a world of artificial intelligence (AI), data serves as the foundation for machine learning (ML) models to identify trends ...

Alexandra Anghel

Director of AI Engineering

What are data privacy and data security? Why are they  critical for an organization?
product

What are data privacy and data security? Why are they critical for an organization?

Imagine you’re a leading healthcare provider that performs extensive data collection as part of your patient management. You’re ...

Catherine Dee

Search and Discovery writer

Achieving digital excellence: Algolia's insights from the GDS Retail Digital Summit
e-commerce

Achieving digital excellence: Algolia's insights from the GDS Retail Digital Summit

In an era where customer experience reigns supreme, achieving digital excellence is a worthy goal for retail leaders. But what ...

Marissa Wharton

Marketing Content Manager

AI at scale: Managing ML models over time & across use cases
ai

AI at scale: Managing ML models over time & across use cases

Just a few years ago it would have required considerable resources to build a new AI service from scratch. Of ...

Benoit Perrot

VP, Engineering

Looking for something?

facebookfacebooklinkedinlinkedintwittertwittermailmail

We’re excited to announce the launch of our Algolia Recommend Spring Release 2022. Algolia Recommend is an AI-based recommendations engine integrated with our Search and Discovery Platform that connects users with the most relevant, actionable recommendations.

From your home page, to category pages — from product pages through checkout — at every touchpoint and using any device, Algolia Recommend helps maximize your user engagement.

Read on to learn about what’s new in this release and to hear how other businesses have benefited from Algolia’s Search & Discovery Platform.

What’s new in Algolia Recommend?

Within Algolia Recommend, from a single dashboard, merchandisers, digital content managers, or digital business leaders can choose the model that is right for them, deploy it, and then track the results. Algolia Recommend Spring Release 2022 includes the following new capabilities:

  • Popular Trends – An innovative new set of AI models that detects emerging trends based on users’ behavioral data as they interact with various brands, categories of products and content, as well as topics of interest, all of which provides merchandisers and digital content leaders the ability to engage instantly with visitors. This increases click through rates, reduces bounce rates, and helps visitors overcome a sense of ‘fear of missing out’ by surfacing what items or topics are trending.

 

  • Rules - Boost CategoriesBusiness Rules – Low code/no code functionality for making continuous improvement with AI and activating unique business strategies –without the need for developer intervention. This provides greater flexibility and control for category merchandisers, online retail strategists, and content specialists to generate powerful new recommendations, connected to their business goals, while gaining significant operational efficiency and flexibility.

 

  • Hybrid Recommend Engine – This is a combination of collaborative filtering algorithms and content-based filtering algorithms that together increase the relevancy and accuracy of recommendations. This approach overcomes the ‘cold start’ problem since recommendations can be presented immediately to users once the content-based data is indexed. Availability of behavioral information either at this initial stage or later can further help fine-tune and enrich the quality of recommendations. This new capability will enable all online vendors to get up and running immediately, increase user engagement more quickly and improve order rates.

Algolia recommend models

In addition to these new models and features, customers have already been seeing success with Algolia Recommend capabilities such as:

  • Related Products – This recommendation model enables retailers to increase conversions and orders by analyzing items shoppers interact with (e.g. clicks, adds to cart, and/or purchases) during their sessions and suggesting similar products from this analysis.

 

  • Frequently Bought Together – This recommendation model increases average order value (AOV) by upselling complementary items on the product page or shopping cart page based on what other shoppers have purchased with that same item during a single shopping session.

Algolia Recommend use cases and customers

One of the most obvious use cases for Algolia Recommend is in an online retail or ecommerce setting, yet Recommend is beneficial in media, publications, and a wide variety of other settings. Whether you choose to integrate it into your homepage, product detail pages, or checkout experience, it can help users discover products that they might need and ensure that they have a delightful experience in the process.

Increase conversion rate with Recommend

Algolia customers like Gymshark, one of the largest sportswear retailers in the UK, have seen Recommend transform their business in the form of a 150% increase in order rate and a 32% increase in ‘Add to cart’ rate during Black Friday 2021.Other retailers like Noski Noski have utilized recommendations to ensure that the right product within their catalog of over 10,000 products finds the right users, at just the right time. Flaconi has increased their average order value (AOV) by 10% since implementing Recommend. Others like UK-based Co-op, publisher Android Authority, broadband internet provider Orange Romania, and others are utilizing Algolia’s platform to power their recommendations.

According to Claire Armstrong, Director of Digital Products, at Fender Musical Instruments Corporation:

with Algolia Recommend, we are able to further promote a wide variety of our content, curriculum, and learning activities within ‘Fender Play’, the complete learning app for guitar bass and ukulele, all of which are supporting the next generation of players on their musical journey.” 

Algolia customers are benefitting from Recommend capabilities in a variety of different use cases and industries beyond these examples, as well. Algolia is ready to power your recommendation needs.

Get started with recommendations today

Everything that we’re announcing as part of the Algolia Recommend Spring Release 2022 is available now. Want to see how Algolia Recommend can be implemented in as little as 4 days and start making an immediate impact on your business? Get a personalized demo today. Ready to start building? Sign up for free and get started with Algolia today.

If you’re an existing Algolia customer, implementing Recommend is as simple as introducing 6-lines of code to create a new carousel – learn more in our documentation. Reach out to your Customer Success Manager or contact us if you want to learn more. 

Thanks for reading, spreading the word, and trying out Recommend!

About the author
Subrata Chakrabarti

VP Product Marketing

Recommended Articles

Powered byAlgolia Algolia Recommend

Why we recommend Recommend to make recommendations
product

Pauline Lafontaine

Sr. Product Marketing Manager

Introducing Algolia Recommend: The next best way for developers to increase revenue
product

Matthieu Blandineau

Sr. Product Marketing Manager

What’s New with Algolia Recommend: Spring Release showcase recap webinar
product

Andy Jones

Marketing Campaign Production Manager