In our B2B digitalization journey, following Search and Navigation optimization, we will discuss Merchandising and how to optimize it with AI automation. Digital merchandising gives you control over your product catalog’s presentation and allows you to apply business logic to search result pages, category pages, filtering facets, or even product carousels.
B2B companies need to have full control over how to present their catalogs to the site users, choosing easily which offerings to promote and which products to highlight. To effectively utilize such functionality on a daily basis requires a business user-centered UI interface, whose goal is to enable B2B merchandising teams to work independently and autonomously from the engineering and other technical teams. Additionally, large B2B organizations with multiple sub-divisions need to have the ability to roll out the merchandising guidelines at the sub-level. Each local subdivision should be able to set up their own sets of rules and business strategies independently.
Merchandising strategy is an essential tool in ecommerce and shouldn’t be reserved for B2C retailers. B2B companies need to be able to benefit from B2C’s best online merchandising practices and gain the ability to quickly promote any product or category based on the internal sales and marketing strategies.
Automation is another aspect that can enhance the merchandising efforts and maximize their efficiency, especially when dealing with extremely large catalogs. This includes offering users an ML generated product recommendations, re-ranking of search results dynamically to ensure most popular products appear at the top, or suggesting AI-generated synonyms based on user searches.
By applying AI and machine learning tools, we can free up time for the organization’s human talent to focus on custom aspects of the ecommerce process and website management, and at the same time supplement the data available to the employees and support their business decision-making process with AI-generated analytical insights. AI and ML tools are capable of analyzing huge sets of data at scale, and recommending and highlighting strategic opportunities, such as identifying potential pockets of growth or surfacing “lost” opportunities that should be mitigated.
Search Merchandising ensures that all the necessary business logic is incorporated in the search results that will be presented to the user.
Category Merchandising workflow enables companies to apply business logic to the category pages. This way, every time a shopper is browsing the website and different product categories (or landing on a category page from an external source, such as Google), the results will appear in a specific order that can be easily adjusted and optimized for conversion according to the current promotional business needs.
When users search for “hozelock” on B2B retailer Tool Station’s website, selected products are pinned to the top of the search results for more effective merchandising.
On B2B retailer King Arthur Baking website, when users enter a query “allergy” they are redirected to a dedicated page on the website, specifically tailored to their query.
Dynamic re-ranking leverages AI to find trends in your users’ behavior. Based on the query and the position of the result they click or convert, it can make improvements to your relevance by boosting results that are rising in popularity.
Using AI, Algolia identifies queries that your users often change (re-write), and proposes synonyms for the terms. With Dynamic Synonyms Suggestions, All you have to do is accept or decline the suggested synonym. You can also tweak the suggestion before accepting it, if you think there’s a better alternative. These synonyms give great indications of what users search for on the website and how they word their queries, which can be useful for SEO, data improvements, product catalog enhancements, and more.
Leverage ML to filter, merchandise, rank, and contextualize recommendations to fit your brand and unique business goals.
On Tool Station’s website, users can get relevant results even when using different words while entering their query (e.g. “cement” or “concrete”), thanks to Algolia’s AI generated synonyms suggestions.
On Selco’s website, users can get relevant results even when using different words while entering their query (e.g. “loft flooring” or “chipboard flooring”), thanks to the Algolia’s AI generated synonyms suggestions.
The examples above showcase various efficient ways to configure and execute robust merchandising strategies, from setting up seasonal promotional campaigns, to utilizing AI and ML tools to drive sales and revenue by automating the optimal relevance of the search and browse results displayed to B2B ecommerce site shoppers.
Tanya Herman
Product ManagerPowered by Algolia AI Recommendations
Catherine Dee
Search and Discovery writerMatthieu Blandineau
Sr. Product Marketing ManagerTanya Herman
Product Manager